Skip to main content
Log in

Colloidal Stability and Toxicity of Gold Nanoparticles and Gold Chloride on Chlamydomonas reinhardtii

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Here we have examined interactions of gold nanoparticles differing in primary particle size and coating with the green algae Chlamydomonas reinhardtii as function of the colloidal stability of the particles in the experimental media used for toxicity studies. Interactions of dissolved Au3+ ions with algae were also examined. Included endpoints were photosynthetic yield and algal growth. Morphological and structural effects were examined microscopically and by flow cytometry. The results indicate no significant toxicity of gold nanoparticles to C. reinhardtii. Analysis of published data suggests toxicity of gold nanoparticles on algal growth to relate rather to particular coatings than to the gold core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auffan M, Rose J, Wiesner M, Bottero JY (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pol 157:1127–1133

    Article  Google Scholar 

  • Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10:1–15. doi:10.1098/rsif.2013.0396

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200. doi:10.1007/s00204-013-1079-4

    Article  Google Scholar 

  • Chanana M, Liz-Marzan LM (2012) Coating matters: the influence of coating materials on the optical properties of gold nanoparticles. Nanophotonics 1:199–220. doi:10.1515/nanoph-2012-0008

    Article  Google Scholar 

  • Cotton FA (1988) Advanced inorganic chemistry. Wiley, New York

  • Cremazy A, Campbell PGC, Fortin C (2013a) The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species. Environ Sci Technol 47:2408–2415. doi:10.1021/es3038388

    Article  Google Scholar 

  • Cremazy A, Levy JL, Campbell PGC, Fortin C (2013b) Uptake and subcellular partitioning of trivalent metals in a green alga: comparison between Al and Sc. Biometals 26:989–1001. doi:10.1007/s10534-013-9675-6

    Article  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95. doi:10.1007/s00216-008-2458-2471

    Article  Google Scholar 

  • Fortin C, Campbell PGC (2000) Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ Toxicol Chem 19:2769–2778

    Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490. doi:10.1021/es071445r

    Article  Google Scholar 

  • Garcia-Cambero JP et al (2013) Converging hazard assessment of gold nanoparticles to aquatic organisms. Chemosphere 93:1194–1200. doi:10.1016/j.chemosphere.2013.06.074

    Article  Google Scholar 

  • Handy R et al (2012) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology. doi:10.1007/s10646-012-0862-y

    Google Scholar 

  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2009) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197

    Article  Google Scholar 

  • Hartmann NB, Engelbrekt C, Zhang JD, Ulstrup J, Kusk KO, Baun A (2013) The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology 7:1082–1094. doi:10.3109/17435390.2012.710657

    Article  Google Scholar 

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833. doi:10.1021/ar3000212

    Article  Google Scholar 

  • Leclerc S, Wilkinson KJ (2014) Bioaccumulation of nanosilver by Chlamydomonas reinhardtii—nanoparticle or the free ion? Environ Sci Technol 48:358–364. doi:10.1021/es404037z

    Article  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem 24:1731–1737

  • Ma HB, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85. doi:10.1016/j.envpol.2012.08.011

    Article  Google Scholar 

  • Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effects of cadmium, cobalt and nickel on growth of the green algae Chlamydomonas reinhardtii—the influence of the cell wall and pH. Arch Environ Contam Toxicol 27:454–458

    Article  Google Scholar 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041. doi:10.1016/j.envpol.2009.05.047

    Article  Google Scholar 

  • Nam SH, Lee WM, Shin YJ, Yoon SJ, Kim SW, Kwak JI, An YJ (2014) Derivation of guideline values for gold(III) ion toxicity limits to protect aquatic ecosystems. Water Res 48:126–136. doi:10.1016/j.watres.2013.09.019

    Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

  • Navarro E (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  Google Scholar 

  • Perreault F, Bogdan N, Morin M, Claverie J, Popovic R (2012) Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 6:109–120. doi:10.3109/17435390.2011.562325

    Article  Google Scholar 

  • Piccapietra F, Allue CG, Sigg L, Behra R (2012a) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7397. doi:10.1021/es300734m

    Article  Google Scholar 

  • Piccapietra F, Sigg L, Behra R (2012b) Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ Sci Technol 46:818–825. doi:10.1021/es202843h

    Article  Google Scholar 

  • Pillai S, Behra R, Nestler H, Suter MJF, Sigg L, Schirmer K (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci USA 111:3490–3495. doi:10.1073/pnas.1319388111

    Article  Google Scholar 

  • Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. Acs Sustain Chem Eng 1:686–702. doi:10.1021/sc400103x

  • Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41:116–126

    Article  Google Scholar 

  • Röhder LA, Brandt T, Sigg L, Behra R (2014) Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat Toxicol 152:121–130. doi:10.1016/j.aquatox.2014.03.027

    Article  Google Scholar 

  • Scheidegger C, Sigg L, Behra R (2011) Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii. Environ Toxicol Chem 30:2546–2552

  • Schirmer K, Behra R, Sigg L, Suter MJ-F (2013) Ecotoxicological aspects of nanomaterials in the aquatic environment. In: Luther W, Zweck A (eds) Safety aspects of engineered nanomaterials. Pan Stanford Publishing Pte. Ltd., Singapore, pp 141–162

    Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. Photosynth Mech Eff V:4253–4258

    Google Scholar 

  • Segets D, Marczak R, Schafer S, Paula C, Gnichwitz JF, Hirsch A, Peukert W (2011) Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. Acs Nano 5:4658–4669. doi:10.1021/nn200465b

    Article  Google Scholar 

  • Sigg L, Behra R, Groh K, Isaacson C, Odzak N, Piccapietra F, Röhder L, Schug H, Yue Y, Schirmer K (2014) Chemical aspects of nanoparticle ecotoxicology. Chimia 68:806–811. doi:10.2533/chimia.2014.806

  • Szivak I, Behra R, Sigg L (2009) Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J Phycol 45:427–435

    Article  Google Scholar 

  • Tai P, Zhao Q, Su D, Li P, Stagnitti F (2010) Biological toxicity of lanthanide elements on algae. Chemosphere 80:1031–1035. doi:10.1016/j.chemosphere.2010.05.030

    Article  Google Scholar 

  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of AU(55) clusters. Small 1:841–844. doi:10.1002/smll.200500104

    Article  Google Scholar 

  • Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, Van de Meent D, Rydzynski K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR (2009) Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546

  • Van Hoecke K, De Schamphelaere KAC, Ali Z, Zhang F, Elsaesser A, Rivera-Gil P, Parak WJ,  Smagghe G, Howard CV, Janssen CR (2013) Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology 7:37–47. doi:10.3109/17435390.2011.626566

Download references

Acknowledgments

This paper is dedicated to the great contribution in understanding bioavailability of metals to algae by Laura Sigg. We greatly acknowledge her for many fruitful discussions, helpful comments, and collaborations. The authors acknowledge support by Ralph Kägi and the Electron Microscopy of ETH Zurich (EMEZ) for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Behra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behra, R., Wagner, B., Sgier, L. et al. Colloidal Stability and Toxicity of Gold Nanoparticles and Gold Chloride on Chlamydomonas reinhardtii . Aquat Geochem 21, 331–342 (2015). https://doi.org/10.1007/s10498-015-9255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9255-1

Keywords

Navigation