Skip to main content
Log in

Biogeochemical Factors Affecting Rare Earth Element Distribution in Shallow Wetland Groundwater

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Wetlands are specific areas able to regulate metals mobility in the environment. Among metals, rare earth elements (REE) appear to be particularly interesting because of the information that could be provided by the REE patterns. Moreover, as REE are becoming a matter of great economic interest, their significant release into the environment may be expected over the next few decades. Wetlands would then play a key role in the regulation of their concentration in the environment. This review demonstrated that REE are released in wetland bound to colloidal organic matter. During the flood season, the released REE concentrations are largely higher than those released during the wet period. This solubilization is related to the organic matter desorption caused by the pH rise imposed by the reducing reactions. The resulting REE patterns depend on the heterogeneity of the humic acid (HA) binding sites and the presence of potential competitive cations, such as Fe(III) and Al(III). At high REE loading, REE are bound to HA carboxylic groups and the pattern exhibit a MREE downward concavity. At low loading, REE are bound to phenolic and chelate groups and the pattern exhibits a lanthanide contraction. At low loading, REE seem to act as cationic bridges between two organic molecules, whereas at high loading they seem to be engaged in strong multidentate bonding. Moreover, the REE patterns can be modified with the competitive cations amount and speciation. The prime factor governing all these processes is pH, which drives the organic colloid production, REE loading and solubility of competitive cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akagi T, Fu FF, Yabuki S (2002) Absence of Ce anomaly in the REE patterns of peat moss and peat grass in the Ozegahara peatland. Geochem J 36:113–118

    Article  Google Scholar 

  • Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J, Andersson P (2006) Colloidal rare earth elements in boreal river: changing sources and distributions during the spring flood. Geochim Cosmochim Acta 70:3261–3274

    Article  Google Scholar 

  • Auterives C (2007) Influence des flux d’eau souterraine entre une zone humide superficielle et un aquifère profond sur le fonctionnement hydrochimique des tourbières: exemple des marais du Cotentin, Basse-Normandie. Ph.D. thesis, University of Rennes I, France. Mémoires du CAREN 17, ISBN 2-914375-46-8, p 261

  • Barroux G, Sonke J, Boaventura G, Viers J, Godderis Y, Bonnet MP, Sondag F, Gardoll S, Lagane C, Seyler P (2006) Seasonal dissolved rare earth element dynamics of the Amazon River main stem, its tributaries, and the Curuai floodplain. Geochem Geophys Geosyst 7:1–18

    Google Scholar 

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    Article  Google Scholar 

  • Braun J-J, Viers J, Dupré B, Polvé M, Ndam J, Muller J-P (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta 62:273–299

    Article  Google Scholar 

  • Brioschi L, Steinmann M, Lucot E, Pierret MC, Stille P, Prunier J (2013) Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant Soil 366:143–163

    Article  Google Scholar 

  • Byrne RH, Li B (1995) Comparative complexation behaviour of the rare earth elements. Geochim Cosmochim Acta 59:4575–4589

    Article  Google Scholar 

  • Byrne RH, Liu X, Schijf J (1996) The influence of phosphate coprecipitation on rare earth distribution in natural waters. Geochim Cosmochim Acta 60:3341–3346

    Article  Google Scholar 

  • Cabaniss SE, Shuman MS (1988) Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim Cosmochim Acta 52:185–193

    Article  Google Scholar 

  • Charlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118:143–167

    Article  Google Scholar 

  • Chuan MC, Shu GY, Liu A (1996) Solubility of heavy metals in a contaminated soil: effect of redox potential and pH. Water Air Soil Pollut 90:543–556

    Article  Google Scholar 

  • Cidu R, Antisari LV, Biddau R, Buscaroli A, Carbone S, Da Pelo S, Dinelli E, Vianello G, Zannoni D (2013) Dynamics of rare earth elements in water–soil systems: the case study of the Pineta San Vitale Ravenna, Italy. Geoderma 193–194:52–67

    Article  Google Scholar 

  • Davranche M, Bollinger J-C, Bril H (2003) Effect of reductive conditions on metal mobility from wasteland solids: an example from the Mortagne-du-Nord site France. Appl Geochem 18:383–394

    Article  Google Scholar 

  • Davranche M, Pourret O, Gruau G, Dia A (2004) Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. J Colloid Interface Sci 277:271–279

    Article  Google Scholar 

  • Davranche M, Pourret O, Gruau G, Dia A, Le Coz-Bouhnik M (2005) Adsorption of REEIII-humate complexes onto MnO2: experimental evidence for cerium anomaly and lanthanide tetrad effect suppression. Geochim Cosmochim Acta 69:4825–4835

    Article  Google Scholar 

  • Davranche M, Grybos M, Gruau G, Pédrot M, Dia A, Marsac R (2011) Rare earth element patterns: a tool for identifying trace metal sources during wetland soil reduction. Chem Geol 284:127–137

    Article  Google Scholar 

  • Dia A, Gruau G, Olivié-Lauquet G, Riou C, Molénat J, Curmi P (2000) The distribution of rare-earths in groundwater: assessing the role of source–rock composition, redox changes and colloidal particles. Geochim Cosmochim Acta 64:4131–4151

    Article  Google Scholar 

  • Ding SM, Liang T, Zhang CS, Huang ZC, Xie YN, Chen TB (2005) Accumulation and fractionation of rare earth elements(REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation. J Exp Bot 56:2765–2775

    Article  Google Scholar 

  • Ding SM, Liang T, Zhang CS, Huang ZC, Xie YN, Chen TB (2006) Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: an application for metal accumulation by plants. Environ Sci Technol 40:2691–2696

    Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991

    Article  Google Scholar 

  • Francis AJ, Dodge CJ (1990) Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Environ Sci Technol 24:373–378

    Article  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. Bio Med Cent Plant Biol 7:63

    Google Scholar 

  • Frimmel FH, Huber L (1996) Influence of humic substances on the aquatic adsorption of heavy metals on defined mineral phases. Environ Int 22:507–517

    Article  Google Scholar 

  • Gangloff S, Stille P, Pierret M-C, Weber T, Chabaux F (2014) Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements case of the Strengbach watershed. Geochim Cosmochim Acta 130:21–41

    Article  Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89:35–47

    Article  Google Scholar 

  • Goonan TG (2011) Rare earth elements—end use and recyclability. U.S. Geological Survey scientific investigations report 2011-5094, 15 p. http://pubs.usgs.gov/sir/2011/5094/

  • Green CH, Hei DM, Cardon GE, Butters GL, Kelly EF (2003) Solubilization of manganese and trace metals in soils affected by acid mine runoff. J Environ Qual 32:1323–1334

    Article  Google Scholar 

  • Gruau G, Dia A, Olivié-Lauquet G, Davranche M, Pinay G (2004) Controls on the distribution of rare earth elements in shallow groundwaters. Water Res 38:3576–3586

    Article  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxide reduction? J Colloid Interface Sci 314:490–501

    Article  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P, Pédrot M (2009) Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154:3–19

    Article  Google Scholar 

  • Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000) Effect of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J Environ Qual 29:288–297

    Article  Google Scholar 

  • Johannesson KH, Lyons WB (1995) Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chem Geol 119:209–223

    Article  Google Scholar 

  • Johannesson KH, Tang J, Daniels JM, Bounds WJ, Burdige DJ (2004) Rare earth element concentrations and speciation in organic rich blackwaters of the Great Dismal Swamp, Virginia, USA. Chem Geol 209:271–294

    Article  Google Scholar 

  • Kalbitz K, Wennrich R (1998) Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci Tot Environ 209:27–39

    Article  Google Scholar 

  • Kautenburger R (2009) Influence of metal concentration and the presence of competing cations on europium and gadolinium speciation with humic acid analysed by CE-ICP-MS. J Anal Atom Spectrom 24:934–938

    Article  Google Scholar 

  • Kautenburger R, Hein C, Sander JM, Beck HP (2014) Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS. Anal Chim Acta 816:50–59

    Article  Google Scholar 

  • Kerr SC, Shafer MM, Overdier J, Armstrong DE (2008) Hydrologic and biogeochemical controls on trace element export from northern Wisconsin wetlands. Biogeochemistry 89:273–294

    Article  Google Scholar 

  • Kohler SJ, Lidman F, Laudon H (2014) Landscape types and pH control organic matter mediated mobilization of Al, Fe, U and La in boreal catchments. Geochim Cosmochim Acta 135:190–202

    Article  Google Scholar 

  • Kulaksız S, Bau M (2011) Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ Int 37:973–979

    Article  Google Scholar 

  • Lima e Cunha MC, Pereira VP, Bastos Neto AC, Nardi LVS, Formoso MLL, Menegotto L (2006) Bio- geoquímica dos Elementos Terras Raras Na Província Estanífera De Pitinga (AM). Revista Brasileira de Geociências 39:560–566

  • Lima e Cunha MC, Do Carmo M, Pereira VP, Nardi LVS, Bastos Neto AC, Vedana LA, Formoso MLL (2012) REE distribution pattern in plants and soils from Pitinga Mine—Amazon, Brazil. Open J Geol 2:253–259

  • Marsac R, Davranche M, Gruau G, Dia A (2010) Metal loading effect on rare earth element binding to humic acid: experimental and modelling evidence. Geochim Cosmochim Acta 74:1749–1761

    Article  Google Scholar 

  • Marsac R, Davranche M, Gruau G, Bouhnik-Le Coz M, Dia A (2011) An improved description of the interactions between rare earth elements and humic acids by modelling. Geochim Cosmochim Acta 75:5625–5637

    Article  Google Scholar 

  • Marsac R, Davranche M, Gruau G, Dia A, Bouhnik-Le Coz M (2012) Aluminum competitive effect on rare earth elements binding to humic acid. Geochim Cosmochim Acta 89:1–9

    Article  Google Scholar 

  • Marsac R, Davranche M, Gruau G, Bouhnik-Le Coz M, Dia A (2013) Iron competitive effect on REE binding to organic matter: implications with regards to REE patterns in waters. Chem Geol 342:119–127

    Article  Google Scholar 

  • Marsac R, Davranche M, Morin G, Takahashi Y, Gruau G, Dia A (2014) Impact of REE loading on REE-humate binding: Sm and Yb EXAFS evidence. Chem Geol (submitted)

  • Martinez RE, Pourret O, Takahashi Y (2014) Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface. J Colloid Interface Sci 413:106–111

    Article  Google Scholar 

  • Neubauer E, Kammer FVD, Hofmann T (2013) Using FLOW FFF and HPSEC to determine trace metal colloid associations in wetland runoff. Water Res 47:2757–2769

    Article  Google Scholar 

  • Ngwenya BT, Mosselmans JFW, Magennis M, Atkinson KD, Tourney J, Olive V, Ellam RM (2009) Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells. Geochim Cosmochim Acta 73:3134–3147

    Article  Google Scholar 

  • Ngwenya BT, Magennis M, Olive M, Mosselmans JFW, Ellam RM (2010) Discrete site surface complexation constant for lanthanide adsorption to bacteria as determined by experiments and linear free energy relationship. Environ Sci Technol 44:650–656

    Article  Google Scholar 

  • Ohta A, Kagi H, Tsuno H, Nomomura M, Kawabe I (2008) Influence of multi-electron excitation on EXAFS spectroscopy of trivalent rare-earth ions and elucidation of change in hydration number through the series. Am Mineral 93:1384–1392

    Article  Google Scholar 

  • Olivié-Lauquet G, Allard T, Benedetti M, Muller J-P (1999) Chemical distribution of trivalent iron in riverine material from a tropical ecosystem: a quantitative EPR study. Water Res 33:2726–2734

    Article  Google Scholar 

  • Otero N, Vitoria L, Soler A, Canals A (2005) Fertilizer characterization: major, trace and rare earth elements. Appl Geochem 20:1473–1488

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC version 2—a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculation. Water-resources investigation report 99-4259. USGS, Denver, p 312

  • Pédrot M, Dia A, Davranche M, Bouhnik-Le Coz M, Henin O, Gruau G (2008) Insights into colloid-mediated trace element release at soil/water interface. J Colloid Interface Sci 325:87–197

    Article  Google Scholar 

  • Pédrot M, Dia A, Davranche M, Gruau G (2015) How do upper soil horizons control rare earth element patterns in shallow groundwaters? Geoderma 239–240:84–96

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2007a) Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data. Geochim Cosmochim Acta 71:2718–2735

    Article  Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2007b) Rare earth complexation by humic acid. Chem Geol 243:128–141

    Article  Google Scholar 

  • Pourret O, Gruau G, Dia A, Davranche M, Molénat J (2010) Colloidal control on the distribution of rare earth elements in shallow groundwaters. Aquat Geochem 16:31–59

    Article  Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2001) Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol. Biogeochemistry 533:323–340

    Article  Google Scholar 

  • Quantin C, Becquer T, Berthelin J (2002) Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C R Geosci 3344:273–278

    Article  Google Scholar 

  • Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67:85–96

    Article  Google Scholar 

  • Schaller J, Vymazal J, Brackhage C (2013) Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: a review. Ecol Eng 53:106–114

    Article  Google Scholar 

  • Shan XQ, Wang HO, Zhang SZ, Zhou HF, Zheng Y, Yu H, Wen B (2003) Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicranopteris dichotoma. Plant Sci 165:1343–1353

    Article  Google Scholar 

  • Shiller AM (2010) Dissolved rare earth elements in a seasonally snow-covered, alpine/subalpine watershed, Loch Vale, Colorado. Geochim Cosmochim Acta 74:2040–2052

    Article  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of the rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34

    Article  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kellher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low. Environ Sci Technol 41:8070–8076

    Article  Google Scholar 

  • Sonich-Mullin C (2013) Rare earth elements: a review of production, processing, recycling, and associated environmental issues. Office of Research and Development, EPA/600/R-12/572, 135 p, USA

  • Sonke JE, Salters VJM (2006) Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. Geochim Cosmochim Acta 70:1495–1506

    Article  Google Scholar 

  • Stern JC, Sonke JE, Salters VJM (2007) A capillary electrophoresis-ICP-MS study of rare earth elements complexation by humic acids. Chem Geol 246:170–180

    Article  Google Scholar 

  • Stille P, Steinmann M, Pierret MC, Gauthier-Lafaye F, Chabaux F, Viville D, Pourcelot L, Matera V, Aouad G, Aubert D (2006) The impact of vegetation on REE fractionation in stream waters of a small forested catchment (the Strengbach case). Geochim Cosmochim Acta 70:3217–3230

    Article  Google Scholar 

  • Stolpe B, Guo L, Shiller AM (2013) Binding and transport of rare earth elements by organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS. Geochim Cosmochim Acta 106:446–462

    Article  Google Scholar 

  • Tachikawa K, Athias V, Jeandel C (2003) Neodymium budget in the modern ocean and paleo-oceanographic implications. J Geophys Res 108:0148–0227

    Google Scholar 

  • Tagami K, Uchida S (2006) Transfer of REEs from nutrient solution to radish through fine roots and their distribution in the plant. J Alloy Compd 408:409–412

    Article  Google Scholar 

  • Takahashi Y, Châtellier X, Hattori KH, Kato K, Fortin D (2005) Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem Geol 219:53–67

    Article  Google Scholar 

  • Takahashi Y, Yamamoto M, Yamamoto Y, Tanaka K (2010) EXAFS study on the cause of enrichment of heavy REEs on bacterial cell surfaces. Geochim Cosmochim Acta 74:5443–5462

    Article  Google Scholar 

  • Tang J, Johannesson KH (2003) Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochim Cosmochim Acta 67:2321–2339

    Article  Google Scholar 

  • Tang J, Johannesson KH (2010) Ligand extraction of rare earth elements from aquifer sediments: implications for rare earth element complexation with organic matter in natural waters. Geochim Cosmochim Acta 74:6690–6705

    Article  Google Scholar 

  • Taunton AE, Welch SA, Banfield JF (2000) Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chem Geol 169:371–382

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Science, Hoboken

    Google Scholar 

  • Thurman EM (1985) Amount of organic carbon in natural waters. In: Organic geochemistry of natural waters, vol 2. Klumer Academic Publisher Group, Dordrecht, The Netherland, pp 7–65

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–48

    Article  Google Scholar 

  • Tyler G (2004) Rare earth elements sin soil and plant system—a review. Plant Soil 267:191–206

    Article  Google Scholar 

  • US GAO United States Government Accountability Office Rare earth materials in the defense supply chain GAO-10-617R (2010) http://www.gao.gov/new.items/d10617r.pdf

  • Vasyukova E, Pokrovsky O, Viers J, Dupré B (2012) New operational method of testing colloid complexation with metals in natural waters. Appl Geochem 27:1226–1237

    Article  Google Scholar 

  • Viers J, Dupré B, Polvé M, Schott J, Dandurand J-L, Braun JJ (1997) Chemical weathering in the drainage basin of a tropical watershed Nsimi–Zoetele site, Cameroon: comparison between organic poor and organic-rich waters. Chem Geol 140:181–206

    Article  Google Scholar 

  • Weber R (2008) An experimental study of fractionation of the rare earth elements in poplar plants (populous eugenei) grown in a calcium-bearing smectite soil. Master’s thesis, Kansas State University, Manhattan, 50 p

Download references

Acknowledgments

This research was funded by the French ANR, through the “Programme Jeunes Chercheuses—Jeunes Chercheurs”/“SURFREE: Rare earth element partitioning at the solid–water interface: Impact on REE geochemical behavior and tracing properties”. Dr. Sara Mullin is acknowledged for post-editing the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Davranche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davranche, M., Gruau, G., Dia, A. et al. Biogeochemical Factors Affecting Rare Earth Element Distribution in Shallow Wetland Groundwater. Aquat Geochem 21, 197–215 (2015). https://doi.org/10.1007/s10498-014-9247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9247-6

Keywords

Navigation