Skip to main content

Advertisement

Log in

Impact of Oyster Farming on Diagenetic Processes and the Phosphorus Cycle in Two Estuaries (Brittany, France)

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This study aims to compare the impact of oyster cultures on diagenetic processes and the phosphorus cycle in the sediments of the Aber Benoît and the Rivière d’Auray, estuary of Brittany, France. Our results showed clear evidence of the seasonal impact of oyster cultures on sediment characteristics (grain size and organic matter parameters) and the phosphorus cycle, especially in the Aber Benoît. At this site, seasonal variations in sulfide and Fe concentrations in pore waters, as well as Fe–P concentrations in the solid phase, highlighted a shift from a system governed by iron reduction (Reference) to a system governed by sulfate reduction (beneath oyster). This could be partly explained by the increase in labile organic matter (i.e., biodeposits) beneath oysters, whose mineralization by sulfate led to high sulfide concentrations in pore waters (up to 4,475 µmol l−1). In turn, sulfide caused an enhanced release of phosphate in the summer, as adsorption sites for phosphate decreased through the formation of iron–sulfide compounds (FeS and FeS2). In the Aber Benoît, dissolved Fe/PO4 ratios could be used as an indicator of phosphate release into oxic water. Low Fe/PO4 ratios in the summer indicated higher effluxes of phosphate toward the water column (up to 47 µmol m−2 h−1). At other periods, Fe/PO4 ratios higher than 2 mol/mol indicated very low phosphate fluxes. In contrast, in the Rivière d’Auray, the occurrence of macroalgae, stranding regularly all over the site, clearly masked the impact of oyster cultures on sediment properties and the phosphorus cycle and made the use of Fe/PO4 ratios more difficult in terms of indicators of phosphate release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins. Paramètres et anlayses. Ifremer, Plouzané

    Google Scholar 

  • Aminot A, Kérouel R, Coverly SC (2009) Nutrients in seawater using segmented flow analysis. In: Wurl O (ed) Practical guidelines for the analysis of seawater. CRC Press, Boca Raton, pp 143–178

    Google Scholar 

  • Andrieux-Loyer F, Aminot A (2001) Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas. Estuar Coast Shelf Sci 52:617–629

    Article  Google Scholar 

  • Andrieux-Loyer F, Philippon X, Bally G, Kérouel R, Youenou A, Le Grand J (2008) Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): in relation to annual P-fluxes and occurrences of Alexandrium Minutum. Biogeochemistry 88:213–231

    Article  Google Scholar 

  • Anschutz P, Zhong A, Sundby B, Mucci A, Gobeil C (1998) Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnol Oceanogr 43:53–64

    Article  Google Scholar 

  • Anschutz P, Chaillou G, Lecroart P (2007) Phosphorus diagenesis in sediment of the Thau lagoon. Estuar Coast Shelf Sci 72(3):447–456

    Article  Google Scholar 

  • Argese E, Cogoni G, Zaggia L, Zonta R, Pini R (1992) Study on Redox state and grain size of sediments in a mud flat of the Venice Lagoon. Environ Geol Water Sci 20:35–42

    Article  Google Scholar 

  • Aspila KI, Agemian H, Chau AS (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  Google Scholar 

  • Azandegbe A (2010) Etude de la structure des communautés bactériennes du sediment et de l’écologie de Vibrio aestuarianus pathogène de l’huître creuse Crassostrea gigas dans deux sites ostréicoles. Thèse de Doctorat, Univ-Brest

  • Barranget C (1997) The role of microphytobenthic primary production in a Mediterranean mussel culture area. Estuar Coast Shelf Sci 44:753–765

    Article  Google Scholar 

  • Barranget C, Alliot E, Plante-Cuny MP (1994) Benthic microphytic activity at two Mediterranean shellfish cultivation sites with reference to benthic fluxes. Oceanol Acta 17(2):211–221

    Google Scholar 

  • Berelson WM, Heggie D, Longmorec A, Kilgore T, Nicholsonc G, Skyring G (1998) Benthic nutrient recycling in Port Phillip Bay, Australia. Estuar Coast Shelf Sci 46:917–934

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, pp 9–14

    Google Scholar 

  • Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288:575–603

    Article  Google Scholar 

  • Boon AR, Duineveld GCA (1998) Chlorophyll a as a marker for bioturbation and carbon flux in Southern and Central North Sea sediments. Mar Ecol Prog Ser 162:33–43

    Article  Google Scholar 

  • Boudreau BP (1996) The diffusive tortuosity of fine-grained unlithified sediments. Geochim Cosmochim Acta 60:3139–3142

    Article  Google Scholar 

  • Bühring SI, Ehrenhauss S, Kamp A, Moodley L, Witte U (2006) Enhanced benthic activity in sandy sublittoral sediments: evidence from C-13 tracer experimetns. Mar Biol Res 2:120–129

    Article  Google Scholar 

  • Cauwet G (1975) Optimisation d’une technique de dosage du carbone organique des sediments. Chem Geol 16:59–63

    Article  Google Scholar 

  • Dyers K (1989) Estuarine flow interaction with topography—lateral and longitudinal effects in Estuarine circulation. In: Neilson B, Kuo A, Brubaker J (eds) Estuarine circulation. Humana, Louisville

    Google Scholar 

  • Ekholm P, Lehtoranta J (2012) Does control of soil erosion inhibit aquatic eutrophication? J Environ Manag 93:140–146

    Article  Google Scholar 

  • Fonselius S, Dyrssen D, Yhlen B (1999) Determination of hydrogen sulfide. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd extended edn. Wiley-VCH, Weinheim, pp 91–100

  • Forrest BM, Creese RG (2006) Benthic impacts of intertidal oyster culture, with consideration of taxonomic sufficiency. Environ Monit Assess 112:159–176

    Article  Google Scholar 

  • Gaertner-Mazouni N, Lacoste E, Bodoy A, Peacock L, Rodier M, Langlade M, Orempuller J, Charpy L (2012) Nutrient fluxes between water column and sediments: potential influence of the pearl oyster culture. Mar Pollut Bull 65(10–12):500–505

    Article  Google Scholar 

  • Gagnaire B, Soletchnik P, Madec P, Geairon P, Le Moine O, Renault T (2006) Diploid and triploid oysters, Crassostrea gigas (Thunberg), reared at two heights above sediment in Marennes-Oleron Basin, France: difference in mortality, sexual maturation and hemocyte parameters. Aquaculture 254:606–616

    Article  Google Scholar 

  • Gardner WS, Mc Carthy MJ, An S, Soboleo D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaires. Limnol Oceanogr 51(1, part 2):558–568

  • Geurts JJM, Smolders AJP, Verhoeven JTA, Roelofs JGM, Lamers LPM (2008) Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshw Biol 53:2101–2116

    Article  Google Scholar 

  • Giles H, Pilditch CA (2006) Effects of mussel (Perna canaliculus) biodeposit decomposition on benthic respiration and nutrient fluxes. Mar Biol 150:261–271

    Article  Google Scholar 

  • Giles H, Pilditch CA, Bell DG (2006) Sedimentation from mussel (Perna canaliculus) culture in the Firth of Thames, New Zealand: impact on sediment oxygen and nutrient fluxes. Aquaculture 261(1):125–140

    Article  Google Scholar 

  • Golterman HL (1995) Theorical aspects of the adsorption of ortho-phosphate onto iron hydroxide. Hydrobiologia 315:59–68

    Article  Google Scholar 

  • Golterman HL (1998) The distribution of phosphate over ironbound and calcium-bound phosphate in stratified sediments. Hydrobiologia 364:75–81

    Article  Google Scholar 

  • Gunnars A, Blomqvist S (1997) Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions-an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37:203–226

    Article  Google Scholar 

  • Heijs SK, Azzoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, van Gemerden H (2000) Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23:85–95

    Article  Google Scholar 

  • Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int Rev Hydrobiol 93(4/5):415–432

    Article  Google Scholar 

  • Hyun J, Kim S, Mok J, Lee JS, An S, Lee W, Jung R (2013) Impacts of long-line aquaculture of pacific oysters (Crassostrea gigas) on sulfate reduction and diffusive nutrient flux in the coastal sediments of jinhae–tongyeong, Korea. Mar Pollut Bull 74(1):187–198

    Article  Google Scholar 

  • Jensen HS, Thamdrup Bo (1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59

    Article  Google Scholar 

  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235(236):731–743

    Article  Google Scholar 

  • Kervella Y, Germain G, Gaurier B, Facq JV, Cayocca F, Lesueur P (2010) Experimental study of the near-field impact of an oyster table on the flow. Eur J Mech B/Fluids 29(1):32–42

    Article  Google Scholar 

  • Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25:797–806

    Article  Google Scholar 

  • Krom MD, Berner RA (1981) The diagenesis of phosphorus in a nearshore marine sediment. Geochim Cosmochim Acta 45:207–216

    Article  Google Scholar 

  • Larsonneur C (1971) Manche Centrale et Baie de Seine: géologie du substratum et des dépôts meubles. Thèse d’Etat de l’université de Caen, n° A.O. 5404

  • Lehtoranta J, Heiskanen AS (2003) Dissolved iron:phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic sea. Hydrobiologia 492:69–84

    Article  Google Scholar 

  • Lehtoranta J, Ekholm P, Pitkänen H (2009) Coastal eutrophication threshold: a matter of sediment microbial processes. Ambio 38(6):303–308

    Article  Google Scholar 

  • Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochemi Cosmochim Acta 33:703–714

    Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  Google Scholar 

  • Mallet AL, Carver CE, Landry T (2006) Impact of suspended and off-bottom eastern oyster culture on the benthic environment in eastern Canada. Aquaculture 255:362–373

    Article  Google Scholar 

  • Matijevic S, Grozdan K, Kljakovic-Gaspic Z, Bogner D (2008) Impact of fish farming on the distribution of phosphorus in sediments in the Middle Adriatic area. Mar Pollut Bull 56:535–548

    Article  Google Scholar 

  • Mazouni N (2004) Influence of suspended oyster cultures on nitrogen regeneration in a coastal lagoon (Thau, France). Mar Ecol Progr Ser 276:103–113

    Article  Google Scholar 

  • Mesnage V, Ogier S, Bally G, Disnar JR, Lottier N, Dedieu K, Rabouille C, Copard Y (2007) Nutrient dynamics at the sediment water-interface in a Mediterranean lagoon (Thau, France): influence of biodeposition by shellfish farming activities. Mar Environ Res 63:257–277

    Article  Google Scholar 

  • Mudroch A, Azcue JM (1995) Manuel of aquatic sediment sampling. CRC Press, Boca Raton

    Google Scholar 

  • Nizzoli D, Welsh DT, Fano EA, Viaroli P (2006) Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways. Mar Ecol Prog Ser 315:151–165

    Article  Google Scholar 

  • Nugues MM, Kaiser MJ, Spencer BE, Edwards DB (1996) Benthic community changes associated with intertidal oyster cultivation. Aquat Resour 27:913–924

    Article  Google Scholar 

  • Pietros JM, Rice MA (2003) The impacts of aquacultured oysters, Crassostrea virginica (Gmelin, 1791) on water column nitrogen and sedimentation: results of a mesocosm study. Aquaculture 220:407–422

    Article  Google Scholar 

  • Piriou JY, Chapron V, Annezo JP (1995) Mesure des flux nutritifs et inventaire d’algues vertes en 1995. Précontrat baie «Golfe du Morbihan». Ifremer-DEL-n° 95-19

  • Psenner R, Boström B, Dinka M, Petterson K, Puckso R, Sager M (1988) Fractionation of phosphorus in suspended matter and sediment. Archiv Für Hydrobiologie Beiheft Ergebnis Limnologie 30:98–103

    Google Scholar 

  • Raimonet M, Andrieux-Loyer F, Ragueneau O, Michaud E, Kerouel R, Philippon X, Nonent M, Mémery L (2013) Strong gradients of benthic biogeochemical processes along a macrotidal temperate estuary: focus on P and Si cycles. Biogeochemistry 115(1–3):399–417

    Article  Google Scholar 

  • Resing JA, Mottl MJ (1992) Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detection. Anal Chem 64:2682–2687

    Article  Google Scholar 

  • Richard P, Riera P, Galois R (1997) Temporal variations in the chemical and carbon isotop compositions of marine and terrestrial organic inputs in the Bay of Marennes-Oléron, France. J Coastal Res 13:879–889

    Google Scholar 

  • Rozan TF, Taillefert M, Trouwborst RE, Glazer BT, Ma S (2002) Iron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol Oceanogr 47(5):1346–1354

    Article  Google Scholar 

  • Ruttenberg KC (1990) Diagenesis and burial of phosphorus in marine sediments: implications for the marine phosphorus budget. Ph.D. thesis, Yale Ubiversity, 375 pp

  • Ruttenberg KC, Berner RA (1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim Cosmochim Acta 57:991–1007

  • Ruttenberg KC, Turnewitsch R, Witte U, Graf G (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr 37(7):1460–1482

    Article  Google Scholar 

  • Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfife flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121–138

    Article  Google Scholar 

  • Samain JF, McCombie H (eds) (2007) Summer mortalities of Pacific oyster Crassostrea gigas, the Morest project. Ifremer/Quae, Plouzané

  • Sarradin PM, Le Bris N, Le Gall C, Rodier O (2005) Fe analysis by the ferrozine method: adaptation to FIA towards in situ analysis in hydrothermal environment. Talanta 66:1131–1138

    Article  Google Scholar 

  • Schuffert JD, Jahnke RA, Kastner M, Leather J, Sturz A, Wing MR (1994) Rates of formation of modern phosphorites off western Mexico. Geochim Cosmochim Acta 58:5001–5010

    Article  Google Scholar 

  • Slomp CP, Epping EHG, Helder W, Van Raaphorst W (1996) A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. J Mar Res 54:1179–1205

    Article  Google Scholar 

  • Smolder AJP, Lamers LPM, Moonen M, Zwaga K, Roelofs JGM (2001) Controlling phosphate release from phosphate-enriched sediments by adding various iron compounds. Biogeochemistry 54:219–228

    Article  Google Scholar 

  • Soletchnik P, Lambert C, Costil K (2005) Summer mortality of Crassostrea gigas (Thunberg) in relation to environmental rearing conditions. J Shellfish Res 24:197–207

    Google Scholar 

  • Sornin JM (1984) Rôle et consequences de la biodéposition à l’interface eau-sédiment. Journal De Recherche Océanographique 9:38–40

    Google Scholar 

  • Spagnoli F, Bergamini MC (1997) Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the Northern Adriatic Sea Shelf. Water Air Soil Pollut 99:541–556

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid–water interface. In: Processes at the mineral-water and particle-water interface in natural systems. Wiley Interscience, New York

  • Stumm W, Morgan JJ (1970) Aquatic Chemistry. An introduction emphasizing chemical equilibria in natural waters. Wiley Intersciences, New York

    Google Scholar 

  • Sugawara K, Koyama T, Kamata E (1957) Recovery of precipitated phosphate from lake muds related to sulfate reduction. Chem Inst Fac. Sci Nagoya Univ 5:60–67

    Google Scholar 

  • Sundby B, Gobeil C, Silverberg N, Mucci A (1992) The phosphorus cycle in coastal marine sediments. Limnol Oceanogr 37:1129–1145

    Article  Google Scholar 

  • Zak D, Kleeberg A, Hupfer M (2006) Sulphate-mediated phosphorus mobilization in reverine sediments at increasing sulphate concentrations, River Spree, NE Germany. Biogeochemistry 80:109–119

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Brittany Region and the French Research Institute for Exploitation of the Sea (IFREMER). We sincerely thank two anonymous reviewers for their insightful critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Andrieux-Loyer.

Appendix

Appendix

See Table 5.

Table 5 Seasonal distributions (2007–2008) of particulate parameters [adsorbed and iron oxide-bound P (Fe–P), organic P (Orga-P), authigenic calcium-bound P (Auth–Ca–P), organic carbon (Orga-C), total nitrogen (total N), chlorophyll a (Chl a), phaeopigments] and dissolved parameters [nitrate (\({\text{NO}}_{3}^{ - }\)), ammonium (\({\text{NH}}_{4}^{ + }\)), phosphate (\({\text{HPO}}_{4}^{2 - }\)), and sulfide (HS)] in sediments of the Aber Benoît and the Rivière d’Auray both under Oyster and at Reference sites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrieux-Loyer, F., Azandegbé, A., Caradec, F. et al. Impact of Oyster Farming on Diagenetic Processes and the Phosphorus Cycle in Two Estuaries (Brittany, France). Aquat Geochem 20, 573–611 (2014). https://doi.org/10.1007/s10498-014-9238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9238-7

Keywords

Navigation