Skip to main content

Advertisement

Log in

Nearshore Carbonate Dissolution in the Hawaiian Archipelago?

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Inorganic carbon measurements made in the late 1980s suggest that alkalinity in the waters surrounding the Hawaiian Archipelago is elevated relative to the oligotrophic waters of the North Pacific. These observations have been interpreted as evidence for a “halo” of elevated carbonate saturation state produced by the dissolution of highly soluble magnesium calcites and aragonite on the island platform or in the water column surrounding the islands. If present, this “halo” has implications for air–sea carbon dioxide exchange in Hawaiian waters and may impact the response of coral reef communities to the acidification of the surface waters of the global ocean. The purpose of this study was to assess the magnitude and extent of the elevated calcium carbonate saturation state observed on previous expeditions to this region. Transects were conducted near several atolls in the Northwestern Hawaiian Islands from shallow water adjacent to the forereef to the open ocean 15 km from the island. Hydrographic profiles were collected at each station, and discrete water samples were collected for the measurement of carbon system parameters necessary to compute calcium carbonate saturation state. Our data were compared with observations made at the Hawaii Ocean Time-series site at Station ALOHA and with hydrographic data collected on the WOCE lines in the North Pacific around the archipelago. We did not detect a carbonate dissolution halo around the islands. We conclude that the previously observed halo was probably an analytical artifact, or possibly a result of extreme variability in carbon chemistry surrounding the islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agegian CR, Mackenzie FT (1989) Calcareous organisms and sediment mineralogy on a mid-depth bank in the Hawaiian Archipelago. Pac Sci 43(1):56–66

    Google Scholar 

  • Agegian C, Mackenzie F, Tribble J, Sabine C (1988) Carbonate production and flux from a mid-depth ecosystem, Penguin Bank, Hawaii. In: Agegian CR (ed) Biogeochemical cycling and fluxes between the deep euphotic zone and other oceanic realms. National Undersea Research Program Research Report 88-1, NOAA, U.S. Dept. of Commerce. Washington, DC, pp 5–32

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:1.1–1.28

    Article  Google Scholar 

  • Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole Bermuda. Aquat Geochem 13(3):237–264

    Article  Google Scholar 

  • Andersson A, Mackenzie F, Bates N (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Article  Google Scholar 

  • Andersson A, Kuffner I, Mackenzie F, Jokiel P, Rodgers K, Tan A (2009) Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

    Article  Google Scholar 

  • Andréfouët S, Pagès J, Tartinville B (2001) Water renewal time for classification of atoll lagoons in the Tuamotu Archipelago (French Polynesia). Coral Reefs 20(4):399–408

    Article  Google Scholar 

  • Behairy A, El-Sayed MK (1984) Carbonate cements in a modern Red Sea reef, north of Jeddah, Saudi Arabia. Mar Geol 58(3–4):443–450

    Article  Google Scholar 

  • Berelson W, Balch W, Najjar R, Feely R, Sabine C, Lee K (2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget. Glob Biogeochem Cycles 21:GB1024. doi:10.1029/2006GB002803

  • Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51(6):1413–1423

    Article  Google Scholar 

  • Caldeira K, Wickett M (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365

    Article  Google Scholar 

  • Chanson M, Millero F (2007) Effect of filtration on the total alkalinity of open-ocean seawater. Limnol Oceanogr Methods 5:293–295

    Article  Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J Geol 62(3):266–283

    Article  Google Scholar 

  • Chave KE (1962) Factors influencing the mineralogy of carbonate sediments. Limnol Oceanogr 7(2):218–223

    Article  Google Scholar 

  • Chen C (2002) Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep Sea Res Part II 49(24–25):5365–5375

    Article  Google Scholar 

  • Clayton T, Byrne R (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res Part I 40(10):2115–2129

    Article  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: and and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22(2):113–127

    Article  Google Scholar 

  • Dickson A, Afghan J, Anderson G (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80(2–3):185–197

    Article  Google Scholar 

  • Dickson A, Sabine C, Christian J (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, p 191

  • Doney S, Fabry V, Feely R, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Feely R, Sabine C, Lee K, Berelson W, Kleypas J, Fabry V, Millero F (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    Article  Google Scholar 

  • Firing J, Brainard RE (2006) Ten years of shipboard ADCP measurements along the northwestern Hawaiian Islands. Atoll Res Bull 543:347–363

    Google Scholar 

  • Friedlingstein P, Houghton R, Marland G, Hackler J, Boden T, Conway T, Canadell J, Raupach M, Ciais P, Le Quèrè C (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812

    Article  Google Scholar 

  • Gattuso J, Frankignoulle M, Bourge I, Romaine S, Buddemeier R (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18(1–2):37–46

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77(920):661–671

    Article  Google Scholar 

  • Grigg R (1997) Paleoceanography of coral reefs in the Hawaiian-Emperor Chain-revisited. Coral Reefs 16(5):33–38

    Article  Google Scholar 

  • Gross MG, Milliman JD, Tracey JI Jr, Ladd HS (1969) Marine geology of Kure and Midway Atolls, Hawaii: a preliminary report. Pac Sci 23:17–25

    Google Scholar 

  • Johnson KM, King AE, Sieburth JMN (1985) Coulometric TCO2 analyses for marine studies; an introduction. Mar Chem 16(1):61–82

    Article  Google Scholar 

  • Jokiel P, Rodgers K, Kuffner I, Andersson A, Cox E, Mackenzie F (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27(3):473–483

    Article  Google Scholar 

  • Kleypas J, Buddemeier R, Archer D, Gattuso J, Langdon C, Opdyke B (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  Google Scholar 

  • Lamb M, Sabine C, Feely R, Wanninkhof R, Key R, Johnson G, Millero F, Lee K, Peng T, Kozyr A (2002) Consistency and synthesis of Pacific Ocean CO2 survey data. Deep Sea Res Part II 49:21–58

    Article  Google Scholar 

  • Lantz CA, Atkinson MJ, Winn CD, Kahng SE (2013) Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs. doi:10.1007/s00338-013-1082-5

    Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Article  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, van der Werf G, Ahlström A, Andrew RM, Bopp L, Canadell JG, Ciais P, Doney SC, Enright C, Friedlingstein P, Huntingford C, Jain AK, Jourdain C, Kato E, Keeling RF, Klein Goldewijk K, Levis S, Levy P, Lomas M, Poulter B, Raupach MR, Schwinger J, Sitch S, Stocker BD, Viovy N, Zaehle S, Zeng N (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5:1107–1157

    Article  Google Scholar 

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009) A numerical study of circulation in a coastal reef-lagoon system. J Geophys Res 114:C06022

    Google Scholar 

  • Lueck RG, Mudge TD (1997) Topographically induced mixing around a shallow seamount. Science 276(5320):1831–1833

    Article  Google Scholar 

  • Mackenzie FT, Lerman A (2006) Carbon in the geobiosphere: earth’s outer shell. topics in geobiology, vol 25. Springer, Dordrecht, p 402

    Google Scholar 

  • Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesian calcites; low-temperature occurrence, solubility and solid-solution behavior. Rev Miner Geochem 11(1):97

    Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci 105(30):10450–10455

    Article  Google Scholar 

  • Merrifield M, Holloway P, Johnston T (2001) The generation of internal tides at the Hawaiian Ridge. Geophys Res Lett 28(4):559–562

    Article  Google Scholar 

  • Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100(1–2):80–94

    Article  Google Scholar 

  • Milliman J (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7(4):927–957

    Article  Google Scholar 

  • Milliman J, Troy P, Balch W, Adams A, Li Y, Mackenzie F (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Res Part I 46(10):1653–1669

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier Science Ltd, Amsterdam, p 724

    Google Scholar 

  • Morse JW, Zullig JJ, Bernstein LD, Millero FJ, Milne P, Mucci A, Choppin GR (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am J Sci 285(2):147–185

    Article  Google Scholar 

  • Morse J, Andersson A, Mackenzie F (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ocean acidification: role of high Mg-calcites. Geochim Cosmochim Acta 70(23):5814–5830

    Article  Google Scholar 

  • Orr J, Fabry V, Aumont O, Bopp L, Doney S, Feely R, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R, Plattner G-K, Rodgers K, Sabine C, Sarmiento J, Schlitzer R, Slater R, Totterdell I, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  Google Scholar 

  • Pagès J, Andréfouët S, Delesalle B, Prasil V (2001) Hydrology and trophic state in Takapoto Atoll lagoon: comparison with other Tuamotu lagoons. Aquat Living Resour 14:183–193

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Ridgwell A, Hargreaves J (2007) Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Global Biogeochemical Cycles 21(2):GB2008. doi:10.1029/2006GB002764

  • Riebesell U, Zondervan I, Rost B, Tortell P, Zeebe R, Morel F (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407(6802):364–367

    Article  Google Scholar 

  • Rudnick D, Boyd T, Brainard R, Carter G, Egbert G, Gregg M, Holloway P, Klymak J, Kunze E, Lee C (2003) From tides to mixing along the Hawaiian Ridge. Science 301(5631):355–357

    Article  Google Scholar 

  • Sabine C (1992) Geochemistry of particulate and dissolved inorganic carbon in the central North Pacific [unpublished Ph.D. thesis]. University of Hawaii, Honolulu, HI

  • Sabine C, Mackenzie F (1995) Bank-derived carbonate sediment transport and dissolution in the Hawaiian Archipelago. Aquat Geochem 1(2):189–230

    Article  Google Scholar 

  • Sabine C, Feely R, Gruber N, Key R, Lee K, Bullister J, Wanninkhof R, Wong C, Wallace D, Tilbrook B (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371

    Article  Google Scholar 

  • Schlanger S, Konishi K (1975) The geographic boundary between the coral-algal and the bryozoan-algal limestone facies: a paleolatitude indicator. 9th Int Congr Sedimentol 1:187–190

    Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res 112(C5):C05004

    Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA, Brock R, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35(4):279–395

    Google Scholar 

Download references

Acknowledgments

This work was funded by NOAA’s Office of National Marine Sanctuaries, through the Papahānaumokuākea Marine National Monument. We would like to thank our colleagues Coulson Lantz, Andreas Andersson, Fred Mackenzie, and Marlin Atkinson for technical assistance and for many fruitful discussions. We would also like to thank Sarah Davis and Caitlin Miles for assistance with collection and analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.W., Dickson, A.G., Kahng, S.E. et al. Nearshore Carbonate Dissolution in the Hawaiian Archipelago?. Aquat Geochem 20, 467–481 (2014). https://doi.org/10.1007/s10498-014-9230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9230-2

Keywords

Navigation