Skip to main content
Log in

Geochemical Evolution of Great Salt Lake, Utah, USA

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In some cores the aragonite peak is replaced by a “dolomite” peak (primary XRD peak near 31 degrees 2-theta), and although aragonite does increase in this interval, “dolomite” is the dominant carbonate mineral. Could the “dolomite” be a secondary replacement of aragonite?

References

  • Arnow T, Stephens D (1990) Hydrologic characteristics of the Great Salt Lake, Utah: 1847–1986. US Geol Surv Water Supply Pap 2332:32

    Google Scholar 

  • Balch DP, Cohen AS, Schnurrenberger DW et al (2005) Ecosystem and paleohydrologicalresponse to quaternary climate change in the Bonneville basin, Utah. Palaeogeogr Palaeoclimatol Palaeoecol 221:99–122. doi:10.1016/j.palaeo.2005.01.013

    Article  Google Scholar 

  • Baskin RL, Allen DV (2005) Bathymetric map of the south part of Great Salt Lake. Utah. US Geol Surv Sci Invest Map, 2894

  • Bodine MW Jr, Jones BF (1986) The salt norm: a quantitative chemical-mineralogical characterization of natural waters. U.S. Geol Surv Water Res Inves Rep 86-4086

  • Cole DR (1982) Tracing fluid sources in the East Shore Area, Utah. Ground Water 20:586–592. doi:10.1111/j.1745-6584.1982.tb01374.x

    Article  Google Scholar 

  • Currey DR (1990) Quaternary paleolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin. USA Palaeogeogr Palaeoclim Palaeoecol 76:189–214. doi:10.1016/0031-0182(90)90113-L

    Article  Google Scholar 

  • Domagalski JL, Eugster HP, Jones BF (1990) Trace metal geochemistry of Walker, Mono, and Great Salt Lakes. In: Spencer RJ, Chou IM (eds) Fluid–mineral interaction: a tribute to H.P. Eugster. The Geochem Society, Special Publ. 2, pp 315–353

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics, chap 8. Springer, New York, pp 237–293

    Google Scholar 

  • Eugster HP, Jones BF (1979) Behavior of major solutes during closed-basin brine evolution. Am J Sci 279:609–631

    Google Scholar 

  • Feth JH (1960) Re-evaluation of the salt chronology of several Great Basin lakes: a discussion. Geol Soc Am Bull 30:637–640

    Google Scholar 

  • Fuchtbauer H, Hardie LA (1976) Experimentally determined homogenous distribution coefficients for precipitated magnesian calcites; application to marine carbonate cements. Geol Soc Am (Abst Prog), 876–877

  • Gilbert GK (1890) Lake Bonneville. Monograph 1, US Geological Survey, Washington, 340 p

  • Godsey HS, Currey DR, Chan MA (2005) New evidence for an extended occupation of the Provo shoreline and implications for regional climate change, Pleistocene Lake Bonneville, Utah, USA. Quat Res 63:212–223. doi:10.1016/j.yqres.2005.01.002

    Article  Google Scholar 

  • Gwynn JW (2002) Great Salt Lake, Utah: chemical and physical variations of the brine and effects of the SPRR causeway, 1966–1996. In: Gwynn JW (ed) Great Salt Lake, an overview of change. Utah Dept Nat Res Spec Pub., 584 pp

  • Hahl DC, Handy AH (1969) Great Salt Lake, Utah: a chemical and physical variation of the brine 1963–1966. Utah Geological Mineralogical Survey Water-Resources Bulletin 12, 33 p

  • Hahl DC, Mitchell CG (1963) Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the Salt Lake brine: part 1, selected hydrologic data. Utah Geological Mineralogical Survey Water-Resources Bulletin 3, 40 p

  • Hardie LA, Eugster HP (1970) The evolution of closed basin brines. Min Soc Am Spec Pub 3:273–290

    Google Scholar 

  • Ingvorsen K, Brandt KK (2002) Anaerobic microbiology and sulfur cycling in hypersaline sediments with special reference to Great Salt Lake. In: Gwynn JW (ed) Great Salt Lake: an overview of change. Utah Department of Natural Resources Speccial Publication. Salt Lake City, Utah, pp 387–398

  • Jones BF (1966) Geochemical evolution of closed basin water in the western Great Basin. In Rau JL (ed) 2nd Symposium on Salt. North. Ohio Geological Society, vol 1, pp 181–200

  • Jones BF, Bodine MW (1987) Normative salt characterization of natural waters. In: Fritz P, Frape SK (eds) Saline waters and gases in crystalline rocks. Geological Association of Canada Special Paper 33, pp 5–18

  • Jones BF, Deocampo DM (2003) Geochemistry of saline lakes. In: Drever JI, Holland HD, Turekian KK (eds) Freshwater geochemistry, weathering and soils. Treatise on Geochemistry, vol 5.13, pp 393–424

  • Jones BF, Spencer RJ (1999) Clay mineral diagenesis at Great Salt Lake, Utah, USA. 5th International symposium on the geochemistry of the earth’s surface. Reykjavik, Iceland. Balkema, Rotterdam, pp 293–297

  • Jones BF, Carmody R, Frape SK (1997) Variations in principal solutes and stable isotopes of Cl and S on evaporation of brines from the Great Salt Lake, Utah. Geol Soc Am Abs Prog 29:261

    Google Scholar 

  • King JK, Kostka JE, Frischer ME et al (2000) Sulfate reducing bacteria methylate mercury at variable rates in pure culture and marine sediments. Appl Environ Microbiol 66:2430–2437. doi:10.1128/AEM.66.6.2430-2437.2000

    Article  Google Scholar 

  • Kohler JF, White WW III (2004) Characteristics of the near-surface brine resources in the Newfoundland Basin, Tooele and Box Elder Counties, Utah. In Castor SB, Papke KG, Meeuwig RO (eds) Betting on industrial minerals, proceedings of the 39th forum on the geology of industrial minerals, vol 33, pp 181–187. Nev Bu Mines & Geology, Sparks, Nevada

  • Kowalewska A, Cohen AS (1998) Reconstruction of paleoenvironments of the Great Salt Lake basin during the late Cenozoic. J Paleolimnol 20:381–407. doi:10.1023/A:1008053505320

    Article  Google Scholar 

  • Last WM (1999) Geolimnology of the Great Plains of western Canada. In: Lemmen DS, Vance RE (eds) Holocene climate and environmental change in the Palliser triangle: a geoscientific context for evaluating the impacts of climate change on the southern Canadian prairies. Geol Surv Can Bull, vol 534, pp 23–55

  • Mason RP, Gill GA (2005) Mercury in the marine environment. In: Parsons MB, Percival JB (eds) Mercury: sources, measurements, cycles, and effects. Mineralogical Association of Canada, vol 34, pp 79–216

  • Mason RP, Sveinsdottir AY (2003) Mercury and methylmercury concentrations in water and largemouth bass in Maryland reservoirs. http://www.dnr.state.md.us/streams/pubs/ad-03-1_Hg_bass.pdf. Accessed 22 November 2004

  • Miller DM (1991) Mesozoic and Cenozoic tectonic evolution of the northeastern Great Basin. In: Buffa RH, Conyer AR (eds) Geology and ore deposits of the Great Basin. Geol Soc Nev, Reno Nevada, pp 202–228

  • Møller N, Weare JH, Duan Z, Greenberg JP (1997) Chemical models for optimizing geothermal energy production: Unpublished Internet document, U.S. Department of Energy Technical Site, Research Summaries-Reservoir Technology

  • Naftz DL, Angeroth C, Kenney T, Waddell B, Silva S, Darnall N, Perschon C, Whitehead J (2008) Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA. Appl Geochem 23:1731–1744. doi:10.1016/j.apgeochem.2008.03.002

    Article  Google Scholar 

  • O’Connor JE (1993) Hydrology, hydraulics, and geomorphology of the Bonneville flood Geol Soc Am Spec Paper 274, 83 pp

  • Oviatt CG (1997) Lake Bonneville fluctuations and global climate change. Geology 25:155–158 doi:10.1130/0091-7613(1997)025<0155:LBFAGC>2.3.CO;2

    Article  Google Scholar 

  • Oviatt CG, Currey DR, Sack D (1992) Radiocarbon chronology of Lake Bonneville, eastern Great Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 99:225–241. doi:10.1016/0031-0182(92)90017-Y

    Article  Google Scholar 

  • Oviatt CG, Habiger GD, Hay JE (1994) Variation in the composition of Lake Bonneville marl: a potential key to lake-level fluctuations and paleoclimate. J Paleolimnol 11:19–30. doi:10.1007/BF00683268

    Article  Google Scholar 

  • Oviatt CG, Miller DM, McGeehin JP et al (2005) The younger Dryas phase of Great Salt Lake, Utah, USA. Palaeogeogr Palaeoclimatol Palaeoecol 219:263–284. doi:10.1016/j.palaeo.2004.12.029

    Article  Google Scholar 

  • Pedone VA (2004) Paleohydrology of Lake Bonneville determined by mineralogy and C, O, and Sr isotope compositions of authigenic carbonates. Geol Soc Am Abs Prog 36:472

    Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Arctic springtime depletion of mercury. Nature 394:331–333. doi:10.1038/28530

    Article  Google Scholar 

  • Scott WE, McCoy WD, Shroba RR et al (1983) Reinterpretation of the exposed record of the last two cycles of Lake Bonneville, western United States. Quat Res 20:261–285. doi:10.1016/0033-5894(83)90013-3

    Article  Google Scholar 

  • Spencer RJ, Hardie LA (1990) Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines. In: Spencer RJ, Chou IM (eds) Fluid–mineral interaction: a tribute to H. P. Eugster. The Geochem Soc Spec Pub vol 2, pp 409–419

  • Spencer RJ, Baedecker MJ, Eugster HP et al (1984) Great Salt Lake and precursors, Utah: the last 30,000 years. Con Min Pet 86:321–334. doi:10.1007/BF01187137

    Article  Google Scholar 

  • Spencer RJ, Eugster HP, Jones BF et al (1985a) Geochemistry of Great Salt Lake, Utah I: hydrochemistry since 1850. Geochem Cosmochem Acta 49:727–737. doi:10.1016/0016-7037(85)90167-X

    Article  Google Scholar 

  • Spencer RJ, Eugster HP, Jones BF (1985b) Geochemistry of Great Salt Lake, Utah II: pleistocene-holocene transition. Geochem Cosmochem Acta 49:739–747. doi:10.1016/0016-7037(85)90168-1

    Article  Google Scholar 

  • Thompson RS, Toolin LJ, Forester RM et al (1990) Accelerator-mass spectrometer (AMS) radiocarbon dating of Pleistocene lake sediments in the Great Basin. Palaeogeogr Palaeoclimatol Palaeoecol 78:301–313

    Article  Google Scholar 

  • Zdanowicz CM, Zielinski GA, Germani MS (1999) Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27:621–624 doi:10.1130/0091-7613(1999)027<0621:MMECAV>2.3.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair F. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, B.F., Naftz, D.L., Spencer, R.J. et al. Geochemical Evolution of Great Salt Lake, Utah, USA. Aquat Geochem 15, 95–121 (2009). https://doi.org/10.1007/s10498-008-9047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9047-y

Keywords

Navigation