Skip to main content
Log in

Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sentandreu MA, Coulis G, Ouali A (2002) Role of muscle endopeptidases and their inhibitors in meat tenderness. Trend Food Sci Technol 13:400–421

    Article  CAS  Google Scholar 

  2. Ouali A, Herrera-Mendez HC, Coulis G, Becila S, Boudjellal A, Aubry L et al (2006) Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci 74:44–58

    Article  PubMed  Google Scholar 

  3. Bernard C, Cassar-Malek I, Le Cunff M, Durbroeucq H, Renard G, Hocquette JF (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55:5229–5237

    Article  CAS  PubMed  Google Scholar 

  4. Denault JB, Salvesen GS (2008) Apoptotic caspase activation and activity. Methods Mol Biol 414:191–220

    CAS  PubMed  Google Scholar 

  5. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556s

    Article  CAS  PubMed  Google Scholar 

  6. Renault TT, Floros KV, Chipuk JE (2013) BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Methods 61:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: Requirements for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  8. Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in apoptosis. J Struct Biol 129:346–358

    Article  CAS  PubMed  Google Scholar 

  9. Becila S, Herrera-Mendez C, Coulis G, Labas R, Astruc T, Picard B et al (2010) Postmortem muscle cells die through apoptosis. Eur Food Res Technol 231(3):485–493

    Article  CAS  Google Scholar 

  10. Cai JY, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366(1–2):139–149

    Article  CAS  PubMed  Google Scholar 

  11. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta (BBA)-Bioenerg 1757(5–6):639–647

    Article  CAS  Google Scholar 

  12. Li Y, Johnson N, Capano M, Edwards M, Crompton M (2004) Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 383:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  14. Tassy C, Herrera-Mendez CH, Sentandreu MA, Aubry L, Bremaud L, Pelissier P et al (2005) Muscle endopin 1, amuscle intracellular serpin which strongly inhibits elastase: purification, characterization, cellular localization and tissue distribution. Biochem J 388:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lokanath NK, Ohshima N, Takio K, Shiromizu I, Kuroishi C, Okazaki N et al (2005) Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8. J Mol Biol 352:905–917

    Article  CAS  PubMed  Google Scholar 

  16. Lomiwes D, Farouk MM, Wu G, Young OA (2014) The development of meat tenderness is likely to be compartmentalized by ultimate pH. Meat Sci 96:646–651

    Article  CAS  PubMed  Google Scholar 

  17. Qian T, Nieminen AL, Herman B (1997) Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol 273:1783–1792

    Google Scholar 

  18. Boudjellal A, Becila S, Coulis G, Herrera-Mendez CH, Aubry L, Lepetit J et al (2008) Is the pH drop profile curvilinear and either monophasic or polyphasic? Consequences on the ultimate bovine meat texture. Afr J Agric Res 3:195–204

    Google Scholar 

  19. Zhang MH, Wang DY, Huang F, Liu F, Zhu YZ, Xu WM et al (2013) Apoptosis during postmortem conditioning and its relationship to duck meat quality. Food Chem 138:96–100

    Article  CAS  PubMed  Google Scholar 

  20. Quadrilatero J, Rush JW (2006) Increased DNA fragmentation and altered apoptotic protein levels in skeletal muscle of spontaneously hypertensive rats. J Appl Physiol 101(4):1149–1161

    Article  CAS  PubMed  Google Scholar 

  21. Cao JX, Ou CR, Zou YF, Ye KP, Zhang QQ, Khan MA et al (2013) Activation of caspase-3 and its correlation with shear force in bovine skeletal muscles during postmortem conditioning. J Anim Sci 91:4547–4552

    Article  CAS  PubMed  Google Scholar 

  22. Sun LJ, Luo C, Long JG, Wei DZ, Liu JK (2006) Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6(3):136–142

    Article  CAS  PubMed  Google Scholar 

  23. Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62–73

    Article  CAS  PubMed  Google Scholar 

  24. Brunelle JK, Chandel NS (2002) Oxygen deprivation induced cell death: an update. Apoptosis 7:475–482

    Article  CAS  PubMed  Google Scholar 

  25. Deng XL, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: exidence from using as improved TUNEL histochemical method. Mol Brain Res 93:64–69

    CAS  Google Scholar 

  26. Alamab MS, Kurohmarub M (2016) Butybenzyl phthalate induces spermatogenic cell apoptosis in prepubertal rats. Tissue Cell 1:35–42

    Article  Google Scholar 

  27. Cao JX, Sun WQ, Zhou GH, Xu XL, Peng ZQ, Hu ZL (2010) Morphological and biochemical assessment of apoptosis in different skeletal muscles of bulls during conditioning. J Anim Sci 88(10):3439–3444

    Article  CAS  PubMed  Google Scholar 

  28. Kemp CM, Parr T, Bardsley RG, Buttery PJ (2006) Comparison of the relative expression of caspase isoforms in different porcine skeletal muscles. Meat Sci 73:426–431

    Article  CAS  PubMed  Google Scholar 

  29. Kemp CM, Bardsley RG, Parr T (2006) Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. J Anim Sci 84:2841–2846

    Article  CAS  PubMed  Google Scholar 

  30. Yang JC, Cortopassi GA (1998) dATP causes specific release of cytochrome c from mitochondria. Biochem Biophys Res Commun 250:454–457

    Article  CAS  PubMed  Google Scholar 

  31. Li T, Brustovetsky T, Antonsson B, Brustovetsky N (2008) Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress. Biochim Biophys Acta 1777(11):1409–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang F, Huang M, Zhang H, Zhang CJ, Zhang DQ, Zhou GH (2016) Changes in apoptotic factors and caspase activation pathways during the postmortem aging of beef muscle. Food Chem 190:110–114

    Article  CAS  PubMed  Google Scholar 

  33. Dan Y (2008) Biological functions of antioxidants in plant transformation. In vitro Cell Dev Biol Plant 44:149–161

    Article  CAS  Google Scholar 

  34. Philchenkov A (2004) Caspases: potential targets for regulating cell death. J Cell Mol Med 8:432–444

    Article  CAS  PubMed  Google Scholar 

  35. Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  CAS  PubMed  Google Scholar 

  36. Underwood KR, Means WJ, Du M (2008) Caspase 3 is not likely involved in the postmortem tenderization of beef muscle. J Anim Sci 86:960–966

    Article  CAS  PubMed  Google Scholar 

  37. Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicol Lett 149:19–23

    Article  CAS  PubMed  Google Scholar 

  38. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2001) Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438

    Article  CAS  PubMed  Google Scholar 

  39. Hofer T, Servais S, Seo AY, Marzetti E, Hiona A, Upadhyay SJ et al (2009) Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction. Mech Ageing Dev 130:297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 6:318–325

    Google Scholar 

  41. Sharma V, Kaur R, Bhatnagar A, Kaur J (2015) Low-pH-induced apoptosis: role of endoplasmic reticulum stress-induced calcium permeability and mitochondria-dependent signaling. Cell Stress Chaperones 20:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jolly AJ, Wild CP, Hardie LJ (2004) Acid and bile salts induce DNA damage in human oesophageal cell lines. Mutagenesis 19:319–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank colleagues in the laboratory and our collaborators for their useful suggestions. This work was supported by the China Agriculture Research System (CARS-38), National Natural Science Foundation of China (Grant No.: 31560463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunli Yu.

Ethics declarations

Conflict of interest

Jiaying Zhang, Qunli Yu, Ling Han, Cheng Chen, Hang Li and Guangxing Han declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the author.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yu, Q., Han, L. et al. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging. Apoptosis 22, 777–785 (2017). https://doi.org/10.1007/s10495-017-1374-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1374-2

Keywords

Navigation