Skip to main content

Advertisement

Log in

Natural products as modulator of autophagy with potential clinical prospects

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang SF, Wang XL, Yang XQ, Chen N (2015) Autophagy-associated targeting pathways of natural products during cancer treatment. Asian Pac J Cancer Prev 15(24):10557–10563

    Article  Google Scholar 

  2. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    Article  CAS  PubMed  Google Scholar 

  4. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182

    Article  CAS  PubMed  Google Scholar 

  6. Munoz-Pinedo C, Martin SJ (2014) Autosis: a new addition to the cell death Tower of Babel. Cell Death Dis 5:e1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nihira K, Miki Y, Ono K, Suzuki T, Sasano H (2014) An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells. Cancer Sci 105(5):568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9(9):1270–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patergnani S, Missiroli S, Marchi S, Giorgi C (2015) Mitochondria-associated endoplasmic reticulum membranes microenvironment: targeting autophagic and apoptotic pathways in cancer therapy. Front Oncol 5:173

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu B, Wen X, Cheng Y (2012) Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 4(5):377–377

    Google Scholar 

  11. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321(5885):117–120

    Article  CAS  PubMed  Google Scholar 

  12. Pua HH, He YW (2009) Mitophagy in the little lymphocytes: an essential role for autophagy in mitochondrial clearance in T lymphocytes. Autophagy 5(5):745–746

    Article  CAS  PubMed  Google Scholar 

  13. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119(11):3329–3339

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106(47):19860–19865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    Article  CAS  PubMed  Google Scholar 

  16. Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, Kroemer G (2009) Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 1793(9):1524–1532

    Article  CAS  PubMed  Google Scholar 

  17. Li ZY, Yang Y, Ming M, Liu B (2011) Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414(1):5–8

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Tong XP, Li JJ, Huang Y, Hu XY, Chen Y, Huang J, Wang JH, Liu B (2015) Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif 48(4):385–397

    Article  PubMed  Google Scholar 

  19. Zhao Y, Qu T, Wang P, Li X, Qiang J, Xia Z, Duan H, Huang J, Zhu L (2016) Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy. Apoptosis 21(5):517–531

    Article  CAS  PubMed  Google Scholar 

  20. Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y (2013) Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radical Bio Med 65(6):402–410

    Article  CAS  Google Scholar 

  21. Jeon YJ, Khelifa S, Ratnikov B, Scott D, Feng Y, Parisi F et al (2015) Regulation of glutamine carrier proteins by rnf5 determines breast cancer response to er stress-inducing chemotherapies. Cancer Cell 27(3):354–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng X, Gong F, Chen Y, Jiang Y, Liu J, Yu M, Zhang S, Wang M, Xiao G, Liao H (2014) Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling. Cell Death Dis 5:e1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, Yuan H (2011) Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett 307(2):141–148

    Article  CAS  PubMed  Google Scholar 

  24. Zhao C, Yin S, Dong Y, Guo X, Fan L, Ye M, Hu H (2013) Autophagy-dependent EIF2AK3 activation compromises ursolic acid-induced apoptosis through upregulation of MCL1 in MCF-7 human breast cancer cells. Autophagy 9(2):196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leng S, Hao Y, Du D, Xie S, Hong L, Gu H, Zhu X, Zhang J, Fan D, Kung HF (2013) Ursolic acid promotes cancer cell death by inducing Atg5-dependent autophagy. Int J Cancer 133(12):2781–2790

    CAS  PubMed  Google Scholar 

  26. Deng Q, Yu X, Xiao L, Hu Z, Luo X, Tao Y, Yang L, Liu X, Chen H, Ding Z, Feng T, Tang Y, Weng X, Gao J, Yi W, Bode AM et al (2013) Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis 4:e804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao FY, Wang S, Li HY, Chen WB, Wang GC, Ma DL, Wong NS, Xiao H, Liu QY, Zhou GX, Li YL, Li MM, Wang YF, Liu Z (2016) EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells. Oncotarget 7(6):6790–6808

    PubMed  PubMed Central  Google Scholar 

  28. Zhang T, Li Y, Park KA, Byun HS, Won M, Jeon J, Lee Y, Seok JH, Choi SW, Lee SH, Man Kim J, Lee JH, Son CG, Lee ZW, Shen HM, Hur GM (2012) Cucurbitacin induces autophagy through mitochondrial ROS production which counteracts to limit caspase-dependent apoptosis. Autophagy 8(4):559–576

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Zhang Y, Qu J, Xu L, Hou K, Zhang J, Qu X, Liu Y (2011) beta-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer 11:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren G, Sha T, Guo J, Li W, Lu J, Chen X (2015) Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 69(4):522–530

    Article  CAS  PubMed  Google Scholar 

  31. Yuan G, Yan SF, Xue H, Zhang P, Sun JT, Li G (2014) Cucurbitacin I induces protective autophagy in glioblastoma in vitro and in vivo. J Biol Chem 289(15):10607–10619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zha QB, Zhang XY, Lin QR, Xu LH, Zhao GX, Pan H, Zhou D, Ouyang DY, Liu ZH, He XH (2015) Cucurbitacin E Induces Autophagy via Downregulating mTORC1 Signaling and Upregulating AMPK Activity. PLoS One 10(5):e0124355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Han X, Sun S, Zhao M, Cheng X, Chen G, Lin S, Guan Y, Yu X (2014) Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-1alpha protein synthesis. PLoS One 9(11):e112470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chan ML, Liang JW, Hsu LC, Chang WL, Lee SS, Guh JH (2015) Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn Schmiedebergs Arch Pharmacol 388(11):1223–1236

    Article  CAS  PubMed  Google Scholar 

  35. Guo J, Huang X, Wang H, Yang H (2015) Celastrol induces autophagy by targeting AR/miR-101 in prostate cancer cells. PLoS One 10(10):e0140745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2012) Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol 227(5):2196–2206

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L, Wang D, Zheng Z, Lu X, Zhang H, Gao Q, Zhou J, Ma D (2015) Elaiophylin, a novel autophagy inhibitor, exerts antitumor activity as a single agent in ovarian cancer cells. Autophagy 11(10):1849–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dyshlovoy SA, Hauschild J, Amann K, Tabakmakher KM, Venz S, Walther R, Guzii AG, Makarieva TN, Shubina LK, Fedorov SN, Stonik VA, Bokemeyer C, Balabanov S, Honecker F, von Amsberg G (2015) Marine alkaloid monanchocidin a overcomes drug resistance by induction of autophagy and lysosomal membrane permeabilization. Oncotarget 6(19):17328–17341

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N et al (2015) Cancer chemoprevention: evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 7(298):298ra117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang J, Chiu J, Zhang H, Qi T, Tang Q, Ma K, Lu H, Li G (2013) Autophagic cell death induced by resveratrol depends on the Ca(2+)/AMPK/mTOR pathway in A549 cells. Biochem Pharmacol 86(2):317–328

    Article  CAS  PubMed  Google Scholar 

  41. Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70(3):1042–1052

    Article  CAS  PubMed  Google Scholar 

  42. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329

    Article  CAS  PubMed  Google Scholar 

  43. Filippi-Chiela EC, Villodre ES, Zamin LL, Lenz G (2011) Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One 6(6):e20849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ko CP, Lin CW, Chen MK, Yang SF, Chiou HL, Hsieh MJ (2015) Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol 51(6):593–601

    Article  CAS  PubMed  Google Scholar 

  45. Chen RJ, Tsai SJ, Ho CT, Pan MH, Ho YS, Wu CH, Wang YJ (2012) Chemopreventive effects of pterostilbene on urethane-induced lung carcinogenesis in mice via the inhibition of EGFR-mediated pathways and the induction of apoptosis and autophagy. J Agric Food Chem 60(46):11533–11541

    Article  CAS  PubMed  Google Scholar 

  46. Chakraborty A, Bodipati N, Demonacos MK, Peddinti R, Ghosh K, Roy P (2012) Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway. Mol Cell Endocrinol 355(1):25–40

    Article  CAS  PubMed  Google Scholar 

  47. Papandreou I, Verras M, McNeil B, Koong AC, Denko NC (2015) Plant stilbenes induce endoplasmic reticulum stress and their anti-cancer activity can be enhanced by inhibitors of autophagy. Exp Cell Res 339(1):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen WL, Pan L, Kinghorn AD, Swanson SM, Burdette JE (2016) Silvestrol induces early autophagy and apoptosis in human melanoma cells. BMC Cancer 16:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Geng YD, Zhang C, Shi YM, Xia YZ, Guo C, Yang L, Kong LY (2015) Icariside II-induced mitochondrion and lysosome mediated apoptosis is counterbalanced by an autophagic salvage response in hepatoblastoma. Cancer Lett 366(1):19–31

    Article  CAS  PubMed  Google Scholar 

  50. Ruela-de-Sousa RR, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1:e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bridgeman BB, Wang P, Ye B, Pelling JC, Volpert OV, Tong X (2016) Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention. Cell Signal 28(5):460–468

    Article  CAS  PubMed  Google Scholar 

  52. Lee Y, Sung B, Kang YJ, Kim DH, Jang JY, Hwang SY, Kim M, Lim HS, Yoon JH, Chung HY, Kim ND (2014) Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int J Oncol 44(5):1599–1606

    CAS  PubMed  Google Scholar 

  53. Chow SE, Chen YW, Liang CA, Huang YK, Wang JS (2012) Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells. J Cell Biochem 113(11):3476–3485

    Article  CAS  PubMed  Google Scholar 

  54. Ko H, Kim YJ, Amor EC, Lee JW, Kim HC, Kim HJ, Yang HO (2011) Induction of autophagy by dimethyl cardamonin is associated with proliferative arrest in human colorectal carcinoma HCT116 and LOVO cells. J Cell Biochem 112(9):2471–2479

    Article  CAS  PubMed  Google Scholar 

  55. Tan HY, Wang N, Man K, Tsao SW, Che CM, Feng Y (2015) Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis 6:e1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aryal P, Kim K, Park PH, Ham S, Cho J, Song K (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J 281(20):4644–4658

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Liu R, Li J, Mao J, Lei Y, Wu J, Zeng J, Zhang T, Wu H, Chen L, Huang C, Wei Y (2014) Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy 7(9):966–978

    Article  CAS  Google Scholar 

  58. Sasazawa Y, Kanagaki S, Tashiro E, Nogawa T, Muroi M, Kondoh Y, Osada H, Imoto M (2012) Xanthohumol impairs autophagosome maturation through direct inhibition of valosin-containing protein. ACS Chem Biol 7(5):892–900

    Article  CAS  PubMed  Google Scholar 

  59. Klappan AK, Hones S, Mylonas I, Bruning A (2012) Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochem Cell Biol 137(1):25–36

    Article  CAS  PubMed  Google Scholar 

  60. Kim H, Moon JY, Ahn KS, Cho SK (2013) Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev 2013:596496

    PubMed  PubMed Central  Google Scholar 

  61. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72(1):29–39

    Article  CAS  PubMed  Google Scholar 

  62. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z (2012) Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 103(4):684–690

    Article  CAS  PubMed  Google Scholar 

  63. Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C (2016) Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One 11(1):e0146553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mosieniak G, Adamowicz M, Alster O, Jaskowiak H, Szczepankiewicz AA, Wilczynski GM, Ciechomska IA, Sikora E (2012) Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev 133(6):444–455

    Article  CAS  PubMed  Google Scholar 

  65. Wu JC, Lai CS, Badmaev V, Nagabhushanam K, Ho CT, Pan MH (2011) Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/Akt-mTOR and MAPK signaling pathways in human leukemia HL-60 cells. Mol Nutr Food Res 55(11):1646–1654

    Article  CAS  PubMed  Google Scholar 

  66. Poornima P, Weng CF, Padma VV (2013) Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chem 141(4):3598–3605

    Article  CAS  PubMed  Google Scholar 

  67. Chiu HW, Fang WH, Chen YL, Wu MD, Yuan GF, Ho SY, Wang YJ (2012) Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 7(7):e40462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Wang JW, Xiao X, Shan Y, Xue B, Jiang G, He Q, Chen J, Xu HG, Zhao RX, Werle KD, Cui R, Liang J, Li YL, Xu ZX (2013) Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis 4:e824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoon JS, Kim HM, Yadunandam AK, Kim NH, Jung HA, Choi JS, Kim CY, Kim GD (2013) Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine 20(11):1013–1022

    Article  CAS  PubMed  Google Scholar 

  70. Meschini S, Condello M, Calcabrini A, Marra M, Formisano G, Lista P, De Milito A, Federici E, Arancia G (2014) The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy 4(8):1020–1033

    Article  Google Scholar 

  71. Guaman Ortiz LM, Croce AL, Aredia F, Sapienza S, Fiorillo G, Syeda TM, Buzzetti F, Lombardi P, Scovassi AI (2015) Effect of new berberine derivatives on colon cancer cells. Acta Biochim Biophys Sin (Shanghai) 47(10):824–833

    Article  Google Scholar 

  72. Wang Z, Zhang J, Wang Y, Xing R, Yi C, Zhu H, Chen X, Guo J, Guo W, Li W, Wu L, Lu Y, Liu S (2013) Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis 34(1):128–138

    Article  CAS  PubMed  Google Scholar 

  73. Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-Valero I, Eleni Anagnostou M, Babatunde F, Corazzari M, Redfern CP, Velasco G, Lovat PE (2015) Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 135(6):1629–1637

    Article  CAS  PubMed  Google Scholar 

  74. Salazar M, Carracedo A, Salanueva ÍJ, Hernández-Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, González-Feria L et al (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119(5):1359–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lao Y, Wan G, Liu Z, Wang X, Ruan P, Xu W, Xu D, Xie W, Zhang Y, Xu H, Xu N (2014) The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 10(5):736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu M, Lao Y, Xu N, Wang X, Tan H, Fu W, Lin Z, Xu H (2015) Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine 22(10):902–910

    Article  CAS  PubMed  Google Scholar 

  77. Hahm ER, Sakao K, Singh SV (2014) Honokiol activates reactive oxygen species-mediated cytoprotective autophagy in human prostate cancer cells. Prostate 74(12):1209–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen T, Hao J, He J, Zhang J, Li Y, Liu R, Li L (2013) Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chem 138(2–3):1034–1041

    Article  CAS  PubMed  Google Scholar 

  79. Yeh PS, Wang W, Chang YA, Lin CJ, Wang JJ, Chen RM (2016) Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett 370(1):66–77

    Article  CAS  PubMed  Google Scholar 

  80. Li HB, Yi X, Gao JM, Ying XX, Guan HQ, Li JC (2007) Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch Pharm Res 30(12):1566–1574

    Article  CAS  PubMed  Google Scholar 

  81. Rasul A, Yu B, Khan M, Zhang K, Iqbal F, Ma T, Yang H (2012) Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol 40(4):1153–1161

    CAS  PubMed  Google Scholar 

  82. Hsu CM, Tsai Y, Wan L, Tsai FJ (2013) Bufalin induces G2/M phase arrest and triggers autophagy via the TNF, JNK, BECN-1 and ATG8 pathway in human hepatoma cells. Int J Oncol 43(1):338–348

    CAS  PubMed  Google Scholar 

  83. Tsai SC, Yang JS, Peng SF, Lu CC, Chiang JH, Chung JG, Lin MW, Lin JK, Amagaya S, Wai-Shan Chung C, Tung TT, Huang WW, Tseng MT (2012) Bufalin increases sensitivity to AKT/mTOR-induced autophagic cell death in SK-HEP-1 human hepatocellular carcinoma cells. Int J Oncol 41(4):1431–1442

    CAS  PubMed  Google Scholar 

  84. Shen S, Zhang Y, Wang Z, Liu R, Gong X (2014) Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress. Int J Biol Sci 10(2):212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. King FW, Fong S, Griffin C, Shoemaker M, Staub R, Zhang YL, Cohen I, Shtivelman E (2009) Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress. PLoS One 4(9):e7283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Park IJ, Yang WK, Nam SH, Hong J, Yang KR, Kim J, Kim SS, Choe W, Kang I, Ha J (2014) Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma. Apoptosis 19(4):615–628

    Article  CAS  PubMed  Google Scholar 

  87. Hu T, Wang L, Zhang L, Lu L, Shen J, Chan RL, Li M, Wu WK, To KK, Cho CH (2015) Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine 22(5):536–544

    Article  CAS  PubMed  Google Scholar 

  88. Wang L, Hu T, Shen J, Zhang L, Chan RL, Lu L, Li M, Cho CH, Wu WK (2015) Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine 22(12):1079–1087

    Article  CAS  PubMed  Google Scholar 

  89. Lian J, Karnak D, Xu L (2010) The Bcl-2-Beclin 1 interaction in (−)-gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy 6(8):1201–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lian J, Ni Z, Dai X, Su C, Smith AR, Xu L, He F (2012) Sorafenib sensitizes (−)-gossypol-induced growth suppression in androgen-independent prostate cancer cells via Mcl-1 inhibition and Bak activation. Mol Cancer Ther 11(2):416–426

    Article  CAS  PubMed  Google Scholar 

  91. Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L (2011) A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 18(1):60–71

    Article  CAS  PubMed  Google Scholar 

  92. Kim NY, Han BI, Lee M (2016) Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett 370(1):19–26

    Article  CAS  PubMed  Google Scholar 

  93. Lan L, Appelman C, Smith AR, Yu J, Larsen S, Marquez RT, Liu H, Wu X, Gao P, Roy A, Anbanandam A, Gowthaman R, Karanicolas J, De Guzman RN, Rogers S, Aube J et al (2015) Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1. Mol Oncol 9(7):1406–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao P, Bauvy C, Souquere S, Tonelli G, Liu L, Zhu Y, Qiao Z, Bakula D, Proikas-Cezanne T, Pierron G, Codogno P, Chen Q, Mehrpour M (2010) The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem 285(33):25570–25581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin HR, Liao Y, Li X, Zhang Z, Zhao J, Wang CZ, Huang WH, Li SP, Yuan CS, Du W (2014) Anticancer compound Oplopantriol A kills cancer cells through inducing ER stress and BH3 proteins Bim and Noxa. Cell Death Dis 5:e1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Leo A, Colavita F, Ciccosanti F, Fimia GM, Lieberman PM, Mattia E (2015) Inhibition of autophagy in EBV-positive Burkitt’s lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis 6:e1876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hau AM, Greenwood JA, Lohr CV, Serrill JD, Proteau PJ, Ganley IG, McPhail KL, Ishmael JE (2013) Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS One 8(6):e65250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25(19):1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’Antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16(3):296–300

    Article  CAS  PubMed  Google Scholar 

  102. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105(9):3374–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pervaiz S, Holme AL (2009) Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal 11(11):2851–2897

    Article  CAS  PubMed  Google Scholar 

  104. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24(1):69–79

    Article  CAS  PubMed  Google Scholar 

  105. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30(6):678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wong KK (2009) Recent developments in anti-cancer agents targeting the Ras/Raf/ MEK/ERK pathway. Recent Pat Anticancer Drug Discov 4(1):28–35

    Article  CAS  PubMed  Google Scholar 

  107. Fu L, Zhang SY, Zhang L, Tong XP, Zhang J, Zhang YH, Ouyang L, Liu B, Huang J (2015) Systems biology network-based discovery of a small molecule activator bl-ad008 targeting ampk/zipk and inducing apoptosis in cervical cancer. Oncotarget 6(10):8071–8088

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yao D, Wang P, Zhang J, Fu L, Ouyang L, Wang J (2016) Deconvoluting the relationships between autophagy and metastasis for potential cancer therapy. Apoptosis 21(6):683–698

    Article  CAS  PubMed  Google Scholar 

  109. Kim KH, Lee MS (2014) Autophagy: a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337

    Article  CAS  PubMed  Google Scholar 

  110. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 40:115–126

    Article  CAS  PubMed  Google Scholar 

  111. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    Article  CAS  PubMed  Google Scholar 

  112. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  CAS  PubMed  Google Scholar 

  113. Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    Article  CAS  PubMed  Google Scholar 

  114. Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9(6):701–719

    Article  CAS  PubMed  Google Scholar 

  115. Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159160

    PubMed  PubMed Central  Google Scholar 

  116. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012:428010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Maday S, Wallace KE, Holzbaur EL (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196(4):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7(9):e46092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu F, Li J, Ni W, Shen YW, Zhang XP (2013) Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia–reperfusion injury. PLoS One 8(1):e55080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, Failli P, Berti A, Casamenti F, Stefani M (2013) The polyphenol oleuropein aglycone protects TgCRND8 mice against Ass plaque pathology. PLoS One 8(8):e71702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, la Marca G, Ed Dami T, Berti A, Stefani M, Casamenti F (2015) Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ss toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 36(2):648–663

    Article  CAS  PubMed  Google Scholar 

  122. Rigacci S, Miceli C, Nediani C, Berti A, Cascella R, Pantano D, Nardiello P, Luccarini I, Casamenti F, Stefani M (2015) Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 6(34):35344–35357

    PubMed  PubMed Central  Google Scholar 

  123. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33(4):767–785

    Article  CAS  PubMed  Google Scholar 

  124. Wong VK, Wu AG, Wang JR, Liu L, Law BY (2015) Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules 20(3):3496–3514

    Article  PubMed  CAS  Google Scholar 

  125. Zhu Z, Yan J, Jiang W, Yao XG, Chen J, Chen L, Li C, Hu L, Jiang H, Shen X (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both beta-amyloid production and clearance. J Neurosci 33(32):13138–13149

    Article  CAS  PubMed  Google Scholar 

  126. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Willis MS, Patterson C (2013) Proteotoxicity and cardiac dysfunction. N Engl J Med 368(18):1755

    CAS  PubMed  Google Scholar 

  128. Glembotski CC (2007) Endoplasmic reticulum stress in the heart. Circ Res 101(10):975–984

    Article  CAS  PubMed  Google Scholar 

  129. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  130. Decker RS, Decker ML, Herring GH, Morton PC, Wildenthal K (1980) Lysosomal vacuolar apparatus of cardiac myocytes in heart of starved and refed rabbits. J Mol Cell Cardiol 12(11):1175–1189

    Article  CAS  PubMed  Google Scholar 

  131. Steenbergen C, Perlman ME, London RE, Murphy E (1993) Mechanism of preconditioning. Ionic alterations. Circ Res 72(1):112–125

    Article  CAS  PubMed  Google Scholar 

  132. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787

    Article  CAS  PubMed  Google Scholar 

  133. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    Article  CAS  PubMed  Google Scholar 

  134. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286(9):7468–7478

    Article  CAS  PubMed  Google Scholar 

  136. Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 15(12):2286–2287

    CAS  PubMed  Google Scholar 

  137. Dengjel J, Kristensen AR, Andersen JS (2008) Ordered bulk degradation via autophagy. Autophagy 4(8):1057–1059

    Article  CAS  PubMed  Google Scholar 

  138. Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M, Dengjel J, Andersen JS (2008) Ordered organelle degradation during starvation-induced autophagy. Mol Cell Proteomics 7(12):2419–2428

    Article  CAS  PubMed  Google Scholar 

  139. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM, Gottlieb RA (2010) Autophagy induced by ischemic preconditioning is essential for cardioprotection. J Cardiovasc Trans Res 3(4):365–373

    Article  CAS  Google Scholar 

  141. Yan L, Vatner DE, Kim S-J, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102(39):13807–13812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gurusamy N, Lekli I, Gorbunov NV, Gherghiceanu M, Popescu LM, Das DK (2008) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med 102(39):13807–13812

    Google Scholar 

  143. Ryter SW, Lee SJ, Smith A, Choi AM (2010) Autophagy in vascular disease. Proc Am Thorac Soc 7(1):40–47

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kanamori H, Takemura G, Goto K, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T, Morishita K, Kawasaki M, Mikami A, Fujiwara T, Fujiwara H, Seishima M, Minatoguchi S (2013) Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway. Am J Pathol 182(3):701–713

    Article  CAS  PubMed  Google Scholar 

  145. Gurusamy N, Lekli I, Mukherjee S, Ray D, Ahsan MK, Gherghiceanu M, Popescu LM, Das DK (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86(1):103–112

    Article  CAS  PubMed  Google Scholar 

  146. Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, Fogliano V, Marchelli R (2005) Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 49(5):495–504

    Article  CAS  PubMed  Google Scholar 

  147. Lin HS, Yue BD, Ho PC (2009) Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr 23(12):1308–1315

    Article  CAS  PubMed  Google Scholar 

  148. Chen ML, Yi L, Jin X, Liang XY, Zhou Y, Zhang T, Xie Q, Zhou X, Chang H, Fu YJ, Zhu JD, Zhang QY, Mi MT (2013) Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 9(12):2033–2045

    Article  CAS  PubMed  Google Scholar 

  149. Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayala MR, El Gaafary M, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El Hadri K et al (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131(12):1061–1070

    Article  CAS  PubMed  Google Scholar 

  150. Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, Pan Y, Li XJ (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8(5):812–825

    Article  CAS  PubMed  Google Scholar 

  151. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28(8):1303–1312

    Article  CAS  PubMed  Google Scholar 

  152. Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond) 4:8

    Article  CAS  Google Scholar 

  153. Zhang L, Cui L, Zhou G, Jing H, Guo Y, Sun W (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24(5):903–911

    Article  CAS  PubMed  Google Scholar 

  154. Chen Y, Huang L, Zhang H, Diao X, Zhao S, Zhou W (2016) Reduction in autophagy by (−)-epigallocatechin-3-gallate (EGCG): a potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage. Mol Neurobiol

  155. Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS, Stephanou A (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 40(6):846–852

    Article  CAS  PubMed  Google Scholar 

  156. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  157. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117(5):1782–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P, Marchetti P (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52(6):1083–1086

    Article  CAS  PubMed  Google Scholar 

  160. Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, Shai I, Golan R, Harman-Boehm I, Schon MR, Greenberg AS, Elazar Z, Bashan N, Rudich A (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96(2):E268–E277

    Article  CAS  PubMed  Google Scholar 

  161. Jansen HJ, van Essen P, Koenen T, Joosten LA, Netea MG, Tack CJ, Stienstra R (2012) Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153(12):5866–5874

    Article  CAS  PubMed  Google Scholar 

  162. Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46(1):3–19

    Article  CAS  PubMed  Google Scholar 

  163. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8(4):325–332

    Article  CAS  PubMed  Google Scholar 

  164. Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J, Lee MS (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8(4):318–324

    Article  CAS  PubMed  Google Scholar 

  165. Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JH, Lee MK, Kim S, Komatsu M, Kang SW, Lee MS (2014) Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest 124(8):3311–3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hahm JR, Noh HS, Ha JH, Roh GS, Kim DR (2014) Alpha-lipoic acid attenuates adipocyte differentiation and lipid accumulation in 3T3-L1 cells via AMPK-dependent autophagy. Life Sci 100(2):125–132

    Article  CAS  PubMed  Google Scholar 

  167. Goldman S, Zhang Y, Jin S (2010) Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy 6(1):179–181

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yan J, Feng Z, Liu J, Shen W, Wang Y, Wertz K, Weber P, Long J, Liu J (2012) Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (−)-epigallocatechin-3-gallate. J Nutr Biochem 23(7):716–724

    Article  CAS  PubMed  Google Scholar 

  169. Shi L, Zhang T, Liang X, Hu Q, Huang J, Zhou Y, Chen M, Zhang Q, Zhu J, Mi M (2015) Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 409:92–102

    Article  CAS  PubMed  Google Scholar 

  170. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10):722–737

    Article  CAS  PubMed  Google Scholar 

  171. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315(5817):1398–1401

    Article  CAS  PubMed  Google Scholar 

  173. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450(7173):1253–1257

    Article  CAS  PubMed  Google Scholar 

  174. Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, Sasai M, Latz E, Brinkmann MM, Iwasaki A, Coyle AJ, Kolbeck R, Green DR, Sanjuan MA (2012) Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37(6):986–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K (2007) The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 104(35):14050–14055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, Swanson KV, Wen KW, Damania B, Moore CB, Giguere PM, Siderovski DP, Hiscott J, Razani B, Semenkovich CF, Chen X et al (2012) The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36(6):933–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6(2):137–149

    Article  CAS  PubMed  Google Scholar 

  178. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10(11):1215–1221

    Article  CAS  PubMed  Google Scholar 

  179. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333(6039):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9(5):376–389

    Article  CAS  PubMed  Google Scholar 

  182. Singh SB, Ornatowski W, Vergne I, Naylor J, Delgado M, Roberts E, Ponpuak M, Master S, Pilli M, White E, Komatsu M, Deretic V (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12(12):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225

    Article  CAS  PubMed  Google Scholar 

  184. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106(49):20842–20846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang CS, Rodgers M, Min CK, Lee JS, Kingeter L, Lee JY, Jong A, Kramnik I, Lin X, Jung JU (2012) The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 11(3):277–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Munz C (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307(5709):593–596

    Article  CAS  PubMed  Google Scholar 

  187. Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26(1):79–92

    Article  CAS  PubMed  Google Scholar 

  188. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T cell repertoire and is essential for tolerance. Nature 455(7211):396–400

    Article  CAS  PubMed  Google Scholar 

  189. Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, Schwartz O, Deretic V, Piguet V (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32(5):654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wildenberg ME, Vos ACW, Wolfkamp SCS, Duijvestein M, Verhaar AP, Te Velde AA, van den Brink GR, Hommes DW (2012) Autophagy attenuates the adaptive immune response by destabilizing the immunologic synapse. Gastroenterology 142(7):1493–503.e6

    Article  CAS  PubMed  Google Scholar 

  191. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW (2011) Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 21(5):966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    Article  CAS  PubMed  Google Scholar 

  194. Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A, Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, Niyonsaba F, Ishii T, Yanagawa T, Kominami E, Ogawa H, Okumura K et al (2011) Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol 127(5):1267–1276.e1266

    Article  CAS  PubMed  Google Scholar 

  195. Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, Fagioli C, Merlini A, Mariani E, Pasqualetto E, Orfanelli U, Ponzoni M, Sitia R, Casola S, Cenci S (2013) Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol 14(3):298–305

    Article  CAS  PubMed  Google Scholar 

  196. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. Embo j 30(23):4701–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sun LD, Wang F, Dai F, Wang YH, Lin D, Zhou B (2015) Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem Pharmacol 95(3):156–169

    Article  PubMed  CAS  Google Scholar 

  198. Rodriguez RM, Lopez-Vazquez A, Lopez-Larrea C (2012) Immune systems evolution. Adv Exp Med Biol 739:237–251

    Article  CAS  PubMed  Google Scholar 

  199. Duan WJ, Liu FL, He RR, Yuan WL, Li YF, Tsoi B, Su WW, Yao XS, Kurihara H (2013) Autophagy is involved in the effects of resveratrol on prevention of splenocyte apoptosis caused by oxidative stress in restrained mice. Mol Nutr Food Res 57(7):1145–1157

    Article  CAS  PubMed  Google Scholar 

  200. Zhou Z, Jiang X, Liu D, Fan Z, Hu X, Yan J, Wang M, Gao GF (2009) Autophagy is involved in influenza A virus replication. Autophagy 5(3):321–328

    Article  CAS  PubMed  Google Scholar 

  201. Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, Chen XX, Wang GF, Li KS (2013) Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One 8(4):e61026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Yeganeh B, Ghavami S, Kroeker AL, Mahood TH, Stelmack GL, Klonisch T, Coombs KM, Halayko AJ (2015) Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol Lung Cell Mol Physiol 308(3):L270–L286

    Article  CAS  PubMed  Google Scholar 

  203. Li W, Zhu S, Li J, Assa A, Jundoria A, Xu J, Fan S, Eissa NT, Tracey KJ, Sama AE, Wang H (2011) EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol 81(9):1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bai X, Oberley-Deegan RE, Bai A, Ovrutsky AR, Kinney WH, Weaver M, Zhang G, Honda JR, Chan ED (2016) Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection. Respirology

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (NSFC) (Grant Number 31270399 and Grant Number 81603275), Key Projects of the National Science and Technology Pillar Program (Grant Number 2012BAI30B02), Fund of the Educational Department of Liaoning Province (Grant Number L2011177), Liaoning Baiqianwan Talents Program (Grant Number 2013921043), Liaoning Province Natural Science Foundation (Grant Number 201602689), Scientific Research Foundation for the Returned Overseas Chinese Scholars of Shenyang Pharmaceutical University (Grant Number GGJJ2015103), and 2015 Career Development Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University (Grant Number ZQN2015015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Peiqi Wang and Lingjuan Zhu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhu, L., Sun, D. et al. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 22, 325–356 (2017). https://doi.org/10.1007/s10495-016-1335-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1335-1

Keywords

Navigation