Skip to main content
Log in

Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recent studies pioneer the existence of a novel programmed cell death pathway in malaria parasite plasmodium and suggest that it could be helpful in developing new targeted anti-malarial therapies. Considering this fact, we evaluated the underlying action mechanism of this pathway in mefloquine (MQ) treated parasite. Since cysteine proteases play a key role in apoptosis hence we performed preliminary computational simulations to determine binding affinity of MQ with metacaspase protein model. Binding pocket identified using computational studies, was docked with MQ to identify it’s potential to bind with the predicted protein model. We further determined apoptotic markers such as mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in MQ treated/untreated parasites by cell based assay. Our results showed low mitochondrial membrane potential, enhanced activity of cysteine protease and increased number of fragmented DNA in treated parasites compared to untreated ones. We next tested the involvement of oxidative stress in MQ mediated cell death and found significant increase in reactive oxygen species generation after 24 h of treatment. Therefore we conclude that apart from hemozoin inhibition, MQ is competent to induce apoptosis in plasmodium by activating metacaspase and ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2015) Word malaria report. Geneva : World Health Organization. http://www.who.int/malaria/publications/world_malaria_report_2015/wmr-2015-no-profiles.pdf

  2. Santelli AC, Ribeiro I, Daher A et al (2012) Effect of artesunate-mefloquine fixed-dose combination in malaria transmission in Amazon basin communities. Malar J 11:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexandra Dassonville-Klimpt AJ, Pillon Marine, Mullié Catherine, Sonnet Pascal (2011) Mefloquine derivatives: synthesis, mechanisms of action, antimicrobial activities. Sci Against Microb Pathog 3:23–35

    Google Scholar 

  4. Palmer KJ, Holliday SM, Brogden RN (1993) Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 45:430–475

    Article  CAS  PubMed  Google Scholar 

  5. Sullivan DJ Jr, Matile H, Ridley RG, Goldberg DE (1998) A common mechanism for blockade of heme polymerization by antimalarial quinolines. J Biol Chem 273:31103–31107

    Article  CAS  PubMed  Google Scholar 

  6. Chevli R, Fitch CD (1982) The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrob Agents Chemother 21:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Famin O, Ginsburg H (2002) Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 63:393–398

    Article  CAS  PubMed  Google Scholar 

  8. Hoppe HC, van Schalkwyk DA, Wiehart UI, Meredith SA, Egan J, Weber BW (2004) Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother 48:2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mutai BK, Waitumbi JN (2010) Apoptosis stalks Plasmodium falciparum maintained in continuous culture condition. Malar J 9(Suppl 3):S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meslin B, Barnadas C, Boni V et al (2007) Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J Infect Dis 195:1852–1859

    Article  CAS  PubMed  Google Scholar 

  11. Picot S, Burnod J, Bracchi V, Chumpitazi BF, Ambroise-Thomas P (1997) Apoptosis related to chloroquine sensitivity of the human malaria parasite Plasmodium falciparum. Trans R Soc Trop Med Hyg 91:590–591

    Article  CAS  PubMed  Google Scholar 

  12. Ch’ng JH, Kotturi SR, Chong AG, Lear MJ, Tan KS (2010) A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases. Cell Death Dis 1:e26

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kumar S, Guha M, Choubey V et al (2008) Bilirubin inhibits Plasmodium falciparum growth through the generation of reactive oxygen species. Free Radic Biol Med 44:602–613

    Article  CAS  PubMed  Google Scholar 

  14. Oakley MS, Kumar S, Anantharaman V et al (2007) Molecular factors and biochemical pathways induced by febrile temperature in intraerythrocytic Plasmodium falciparum parasites. Infect Immun 75:2012–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Totino PR, Daniel-Ribeiro CT, Corte-Real S, de Fatima Ferreira-da-Cruz M (2008) Plasmodium falciparum: erythrocytic stages die by autophagic-like cell death under drug pressure. Exp Parasitol 118:478–486

    Article  CAS  PubMed  Google Scholar 

  16. Porter H, Gamette MJ, Cortes-Hernandez DG, Jensen JB (2008) Asexual blood stages of Plasmodium falciparum exhibit signs of secondary necrosis, but not classical apoptosis after exposure to febrile temperature (40 C). J Parasitol 94:473–480

    Article  CAS  PubMed  Google Scholar 

  17. Lopez ML, Vommaro R, Zalis M, de Souza W, Blair S, Segura C (2010) Induction of cell death on Plasmodium falciparum asexual blood stages by Solanum nudum steroids. Parasitol Int 59:217–225

    Article  CAS  PubMed  Google Scholar 

  18. https://www.blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins

  19. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  PubMed  Google Scholar 

  21. Laskowski RAMMW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  22. Biovia DS (2015) Discovery studio modeling environment. San Diego: Dassault Syst Release 4:1

    Google Scholar 

  23. Wu G, Robertson DH, Brooks CL 3rd, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  24. https://www.chemaxon.com/download/marvin-suite/

  25. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  26. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  27. Hsiao LL, Howard RJ, Aikawa M, Taraschi TF (1991) Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J 274(Pt 1):121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheema HS, Prakash O, Pal A, Khan F, Bawankule DU, Darokar MP (2013) Glabridin induces oxidative stress mediated apoptosis like cell death of malaria parasite Plasmodium falciparum. Parasitol Int 63:349–358

    Article  PubMed  Google Scholar 

  29. Wong AH, Yan C, Shi Y (2012) Crystal structure of the yeast metacaspase Yca1. J Biol Chem 287:29251–29259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Na-Bangchang K, Karbwang J (2009) Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin Pharmacol 23:387–409

    Article  CAS  PubMed  Google Scholar 

  31. Rathore S, Datta G, Kaur I, Malhotra P, Mohmmed A (2015) Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell Death Dis 6:e1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meslin B, Beavogui AH, Fasel N, Picot S (2011) Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death. PLoS One 6:e23867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues JCF, Seabra SH, de Souza W (2006) Apoptosis-like death in parasitic protozoa. Brazi J Morphol Sci 23:87–98

    Google Scholar 

  34. Verma NK, Singh G, Dey CS (2007) Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol 116:1–13

    Article  CAS  PubMed  Google Scholar 

  35. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  36. Milatovic D, Jenkins JW, Hood JE, Yu Y, Rongzhu L, Aschner M (2011) Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. Neurotoxicology 32:578–585

    Article  CAS  PubMed  Google Scholar 

  37. Yadav N, Dwivedi A, Mujtaba SF et al (2014) Photosensitized mefloquine induces ROS-mediated DNA damage and apoptosis in keratinocytes under ambient UVB and sunlight exposure. Cell Biol Toxicol 30:253–268

    Article  CAS  PubMed  Google Scholar 

  38. Bissinger R, Barking S, Alzoubi K, Liu G, Lang F (2015) Stimulation of suicidal erythrocyte death by the antimalarial drug mefloquine. Cell Physiol Biochem 36:1395–1405

    Article  CAS  PubMed  Google Scholar 

  39. Guilherme B, Fortes LSA, Bozza Marcelo T (2012) Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 8:2368–2375

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge to Council of Scientific and Industrial Research Center (CSIR), India for funding to perform this study. The authors also thank to the Director CDRI, for extending all the necessary facilities. Funding received from SPlenDID CSIR Project is also acknowledged. We are also thankful to Mr. A.L. Vishwakarma and Mrs. Rima Ray Sarkar for providing FACS and Confocal microscopy facility. CDRI communication no. 9264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunjan, S., Singh, S.K., Sharma, T. et al. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis 21, 955–964 (2016). https://doi.org/10.1007/s10495-016-1265-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1265-y

Keywords

Navigation