Skip to main content
Log in

Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Canstatin, a non-collagenous fragment, is cleaved from type IV collagen α2 chain, an essential component of basement membrane surrounding cardiomyocytes. Although canstatin is known as an endogenous anti-angiogenic factor, its effects on cardiomyocytes have not been clarified. This study examined the effects of canstatin on isoproterenol-induced apoptosis in differentiated H9c2 cardiomyoblasts. Retinoic acid was used to differentiate H9c2 myoblast to cardiomyocyte-like phenotype. Cell viability was determined by a cell counting assay. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of dynamin related protein (Drp)1 at Ser637 which regulates mitochondrial fission. Mito Sox Red staining was performed to examine a mitochondria-dependent production of reactive oxygen species (ROS). Mitochondrial morphology was detected by Mito Tracker Red staining. Isoproterenol (100 μM, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression, which were inhibited by canstatin (10–250 ng/ml) in a concentration-dependent manner. Canstatin suppressed the isoproterenol-induced mitochondrial fission but not ROS. Canstatin also inhibited the isoproterenol-induced dephosphorylation of Drp1 at Ser637. In conclusion, canstatin inhibits isoproterenol-induced apoptosis through the inhibition of mitochondrial fission via the suppression of dephosphorylation of Drp1 at Ser637 in differentiated H9c2 cardiomyoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s Medium

Drp1:

Dynamin related protein 1

NFAT:

Nuclear factor of activated T-cells

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

S.E.M.:

Standard error of the mean

References

  1. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  CAS  PubMed  Google Scholar 

  2. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    Article  CAS  PubMed  Google Scholar 

  3. Parati G, Esler M (2012) The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 33:1058–1066

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Seto SW, Golledge J (2014) Angiotensin II, sympathetic nerve activity and chronic heart failure. Heart Fail Rev 19:187–198

    Article  CAS  PubMed  Google Scholar 

  5. Amin P, Singh M, Singh K (2011) Beta-adrenergic receptor-stimulated cardiac myocyte apoptosis: role of beta1 integrins. J Signal Transduct 2011:179057

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choudhary R, Mishra KP, Subramanyam C (2006) Interrelations between oxidative stress and calcineurin in the attenuation of cardiac apoptosis by eugenol. Mol Cell Biochem 283:115–122

    Article  CAS  PubMed  Google Scholar 

  7. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    Article  CAS  PubMed  Google Scholar 

  8. Menon B, Singh M, Ross RS, Johnson JN, Singh K (2006) beta-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of beta1 integrin signaling and mitochondrial pathway. Am J Physiol Cell Physiol 290:C254–C261

    Article  CAS  PubMed  Google Scholar 

  9. Remondino A, Kwon SH, Communal C et al (2003) Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92:136–138

    Article  CAS  PubMed  Google Scholar 

  10. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189:257–265

    Article  CAS  PubMed  Google Scholar 

  11. Hudson BG, Reeders ST, Tryggvason K (1993) Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268:26033–26036

    CAS  PubMed  Google Scholar 

  12. Kuhn K (1995) Basement membrane (type IV) collagen. Matrix Biol 14:439–445

    Article  CAS  PubMed  Google Scholar 

  13. Pasco S, Brassart B, Ramont L, Maquart FX, Monboisse JC (2005) Control of melanoma cell invasion by type IV collagen. Cancer Detect Prev 29:260–266

    Article  CAS  PubMed  Google Scholar 

  14. Shamhart PE, Meszaros JG (2010) Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol 48:530–537

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe T, Kusachi S, Yamanishi A et al (1998) Localization of type IV collagen alpha chain in the myocardium of dilated and hypertrophic cardiomyopathy. Jpn Heart J 39:753–762

    Article  CAS  PubMed  Google Scholar 

  16. Yamanishi A, Kusachi S, Nakahama M et al (1998) Sequential changes in the localization of the type IV collagen alpha chain in the infarct zone: immunohistochemical study of experimental myocardial infarction in the rat. Pathol Res Pract 194:413–422

    Article  CAS  PubMed  Google Scholar 

  17. He GA, Luo JX, Zhang TY, Wang FY, Li RF (2003) Canstatin-N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem Biophys Res Commun 312:801–805

    Article  CAS  PubMed  Google Scholar 

  18. He GA, Luo JX, Zhang TY, Hu ZS, Wang FY (2004) The C-terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells. Biochem Biophys Res Commun 318:354–360

    Article  CAS  PubMed  Google Scholar 

  19. Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275:1209–1215

    Article  CAS  PubMed  Google Scholar 

  20. Magnon C, Galaup A, Mullan B et al (2005) Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res 65:4353–4361

    Article  CAS  PubMed  Google Scholar 

  21. Mundel TM, Kalluri R (2007) Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 74:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Panka DJ, Mier JW (2003) Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 278:37632–37636

    Article  CAS  PubMed  Google Scholar 

  23. Shewchuk LJ, Bryan S, Ulanova M, Khaper N (2010) Integrin beta3 prevents apoptosis of HL-1 cardiomyocytes under conditions of oxidative stress. Can J Physiol Pharmacol 88:324–330

    Article  CAS  PubMed  Google Scholar 

  24. Comelli M, Domenis R, Bisetto E et al (2011) Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion 11:315–326

    Article  CAS  PubMed  Google Scholar 

  25. Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274:29063–29070

    Article  CAS  PubMed  Google Scholar 

  26. Branco AF, Sampaio SF, Wieckowski MR, Sardao VA, Oliveira PJ (2013) Mitochondrial disruption occurs downstream from beta-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: differential activation of stress and survival pathways. Int J Biochem Cell Biol 45:2379–2391

    Article  CAS  PubMed  Google Scholar 

  27. Okada M, Oba Y, Yamawaki H (2015) Endostatin stimulates proliferation and migration of adult rat cardiac fibroblasts through PI3K/Akt pathway. Eur J Pharmacol 750:20–26

    Article  CAS  PubMed  Google Scholar 

  28. Kazama K, Okada M, Yamawaki H (2015) Adipocytokine, omentin inhibits doxorubicin-induced H9c2 cardiomyoblasts apoptosis through the inhibition of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 457:602–607

    Article  CAS  PubMed  Google Scholar 

  29. Morita T, Okada M, Hara Y, Yamawaki H (2013) Addition of adult serum improves endothelium-dependent relaxation of organ-cultured rat mesenteric artery via inhibiting mitochondrial reactive oxygen species. Vascul Pharmacol 58:105–111

    Article  CAS  PubMed  Google Scholar 

  30. Cereghetti GM, Stangherlin A, Martins de Brito O et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Somvanshi RK, Zou S, Qiu X, Kumar U (2014) Somatostatin receptor-2 negatively regulates beta-adrenergic receptor mediated Ca(2 +) dependent signaling pathways in H9c2 cells. Biochim Biophys Acta 1843:735–745

    Article  CAS  PubMed  Google Scholar 

  32. Sata M, Walsh K (1998) TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 4:415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20:309–316

    Article  CAS  PubMed  Google Scholar 

  34. Feng QZ, Zhao YS, Abdelwahid E (2008) The role of Fas in the progression of ischemic heart failure: prohypertrophy or proapoptosis. Coron Artery Dis 19:527–534

    Article  PubMed  Google Scholar 

  35. Lu F, Xing J, Zhang X et al (2013) Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 381:41–50

    Article  CAS  PubMed  Google Scholar 

  36. Adams JW, Pagel AL, Means CK, Oksenberg D, Armstrong RC, Brown JH (2000) Cardiomyocyte apoptosis induced by Galphaq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ Res 87:1180–1187

    Article  CAS  PubMed  Google Scholar 

  37. Xu G, Ahn J, Chang S et al (2012) Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 287:4808–4817

    Article  CAS  PubMed  Google Scholar 

  38. Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75

    Article  CAS  PubMed  Google Scholar 

  39. Dorn GW 2nd (2015) Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol Med 7:865–877

    Article  CAS  PubMed  Google Scholar 

  40. Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171:1890–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Otera H, Mihara K (2012) Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012:821676

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zaja I, Bai X, Liu Y et al (2014) Cdk1, PKCdelta and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun 453:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10:640–648

    Article  CAS  PubMed  Google Scholar 

  46. Molkentin JD, Lu JR, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saito S, Hiroi Y, Zou Y et al (2000) beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533

    Article  CAS  PubMed  Google Scholar 

  48. Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301

    Article  CAS  PubMed  Google Scholar 

  49. Wang YG, Ji X, Pabbidi M, Samarel AM, Lipsius SL (2009) Laminin acts via focal adhesion kinase/phosphatidylinositol-3′ kinase/protein kinase B to down-regulate beta1-adrenergic receptor signalling in cat atrial myocytes. J Physiol 587:541–550

    Article  CAS  PubMed  Google Scholar 

  50. Ortega N, Werb Z (2002) New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 115:4201–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yasuda J, Takada L, Kajiwara Y, Okada M, Yamawaki H (2015) Endostatin inhibits bradykinin-induced cardiac contraction. J Vet Med Sci 77:1391–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baskin KK, Rodriguez MR, Kansara S et al (2014) MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. J Mol Cell Cardiol 72:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto Y, Hoshino Y, Ito T et al (2008) Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res 79:89–96

    Article  CAS  PubMed  Google Scholar 

  54. Ni YG, Berenji K, Wang N et al (2006) Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation 114:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Kitasato University Research Grant for Young Researchers and JSPS KAKENHI Grant Number 24780289 (Grant-in-Aid for Young Scientists B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneyoshi Okada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, M., Morioka, S., Kanazawa, H. et al. Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts. Apoptosis 21, 887–895 (2016). https://doi.org/10.1007/s10495-016-1262-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1262-1

Keywords

Navigation