Skip to main content

Advertisement

Log in

Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Epirubicin (EPI) is widely used for triple negative breast cancer (TNBC), but a substantial number of patients develop EPI resistance that is associated with poor outcome. The underlying mechanism for EPI resistance remains poorly understood. We have developed and characterized an EPI-resistant (EPI-R) cell line from parental MDA-MB-231 cells. These EPI-R cells reached stable growth in the medium containing 8 μg/ml of EPI. They overexpressed P-glycoprotein (P-gp) and contained numerous autophagic vacuoles. The suppression of P-gp overexpression and/or autophagy restored the sensitivity of these EPI-R cells to EPI. We further show that autophagy conferred resistance to EPI on MDA cells by blocking the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated pro-apoptotic signals. Together, these results reveal a synergistic role of P-gp, autophagy, and NF-κB pathways in the development of EPI resistance in TNBC cells. They also suggest that blocking the P-gp overexpression and autophagy may be an effective means of reducing EPI resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The MDA-MB-231/EPI cell line used in this study was patented in accordance with Goub Company Ltd., Beijing, China on May 4, 2014 (Case #: 201410183516.4). This cell line was preserved in China Center for Type Culture Collection (CCTCC), NO: C201439.

Abbreviations

ABC transporter:

ATP-binding cassette transporter

ADM:

Adriamycin

BCL2:

B-cell CLL/lymphoma 2

BCRP:

Breast cancer resistance protein

BECN1:

Beclin 1

CQ:

Chloroquine

EPI:

Epirubicin

EPI-R cell:

EPI-resistant MDA-MB-231 cell

ER:

Estrogen receptor

FBS:

Fetal bovine serum

FCM:

Flow cytometry

GST:

Glutathione transferase

HER2:

Human epidermal growth factor receptor 2

MAP1-LC3 or LC3:

Microtubule-associated protein 1 light chain 3

MDA cell:

MDA-MB-231 cell

MDC:

Monodansylcadaverine

MRP1:

Multidrug resistance-associated protein 1

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PBS:

Phosphate-buffered saline

PDTC:

Ammonium pyrrolidinedithiocarbamate

P-gp:

P-glycoprotein

PR:

Progesterone receptor

PVDF:

Polyvinylidene fluoride

qRT-PCR:

Quantitative real-time PCR

Rh123:

Rhodamine 123

RI:

Resistance index

RT-PCR:

Reverse transcription PCR

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

SDS–polyacrylamide gel electrophoresis

TBST:

Tris-buffered saline-Tween 20

TEM:

Transmission electron microscopy

TNBC:

Triple negative breast cancer

References

  1. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi:10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  2. Irshad S, Ellis P, Tutt A (2011) Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol 23(6):566–577

    Article  CAS  PubMed  Google Scholar 

  3. Carey LA (2010) Directed therapy of subtypes of triple-negative breast cancer. Oncologist 15(Supplement 5):49–56

    Article  CAS  PubMed  Google Scholar 

  4. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, Bradbury I, Bliss JM, Azim HA Jr, Ellis P, Di Leo A, Baselga J, Sotiriou C, Piccart-Gebhart M (2012) Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 30(15):1879–1887

    Article  CAS  PubMed  Google Scholar 

  5. Kovalev AA, Tsvetaeva DA, Grudinskaja TV (2013) Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multiple drug resistance in patients with early and metastatic breast cancer. Exp Oncol 35(4):287–290

    CAS  PubMed  Google Scholar 

  6. Palodetto B, de Campos PM, Benites BD, de Chauffaille MLLf, Velloso ED, Traina F, Saad ST (2013) MDR-1 and GST polymorphisms are involved in myelodysplasia progression. Leuk Res 37(8):970–973

    Article  CAS  PubMed  Google Scholar 

  7. Zhu WY, Hunag YY, Liu XG, He JY, Chen DD, Zeng F, Zhou JH, Zhang YK (2012) Prognostic evaluation of CapG, gelsolin, P-gp, GSTP1, and Topo-II proteins in non-small cell lung cancer. Anat Rec 295(2):208–214

    Article  CAS  Google Scholar 

  8. Genois M-M, Paquet ER, Laffitte M-CN, Maity R, Rodrigue A, Ouellette M, Masson J-Y (2014) DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 78(1):40–73. doi:10.1128/mmbr.00045-13

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ling X, Zhou Y, Li S-W, Yan B, Wen L (2010) Modulation of mitochondrial permeability transition pore affects multidrug resistance in human hepatocellular carcinoma cells. Int J Biol Sci 6(7):773–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Louisa M, Soediro TM, Suyatna FD (2014) In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells. Asian Pac J Cancer Prev 15(4):1639–1642. doi:10.7314/apjcp.2014.15.4.1639

    Article  PubMed  Google Scholar 

  11. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5(9):726–734

    Article  CAS  PubMed  Google Scholar 

  12. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115(10):2679–2688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cook KL, Shajahan AN, Warri A, Jin L, Hilakivi-Clarke LA, Clarke R (2012) Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res 72(13):3337–3349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vazquez-Martin A, Oliveras-Ferraros C, Menendez J (2009) Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS ONE 4(7):e6251

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sun WL, Chen J, Wang YP, Zheng H (2011) Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy 7(9):1035–1044

    Article  CAS  PubMed  Google Scholar 

  16. Cook KL, Shajahan AN, Clarke R (2011) Autophagy and endocrine resistance in breast cancer. Expert Rev Anticancer Ther 11(8):1283–1294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  18. Choi KS (2012) Autophagy and cancer. Exp Mol Med 44:109–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kim S-Y, Song X, Zhang L, Bartlett DL, Lee YJ (2014) Role of Bcl-xL/Beclin-1 in interplay between apoptosis and autophagy in oxaliplatin and bortezomib-induced cell death. Biochem Pharmacol 88(2):178–188. doi:10.1016/j.bcp.2014.01.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Geismann C, Grohmann F, Sebens S, Wirths G, Dreher A, Häsler R, Rosenstiel P, Hauser C, Egberts J, Trauzold A, Schneider G, Sipos B, Zeissig S, Schreiber S, Schäfer H, Arlt A (2014) c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 5:e1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Godwin P, Baird A-M, Heavey S, Barr M, O’Byrne K, Gately KA (2013) Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 3:120. doi:10.3389/fonc.2013.00120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Y-f Liu, Yang A, Liu W, Wang C, Wang M, Zhang L, Wang D, J-f Dong, Li M (2015) NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis. PLoS ONE 10(2):e0115968. doi:10.1371/journal.pone.0115968

    Article  Google Scholar 

  23. Liu L, Zuo LF, Guo JW (2013) Reversal of multidrug resistance by the anti-malaria drug artesunate in the esophageal cancer Eca109/ABCG2 cell line. Oncol Lett 6(5):1475–1481

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Tarasova NI, Seth R, Tarasov SG, Kosakowska-Cholody T, Hrycyna CA, Gottesman MM, Michejda CJ (2005) Transmembrane inhibitors of P-glycoprotein, an ABC transporter. J Med Chem 48(11):3768–3775. doi:10.1021/jm049065t

    Article  CAS  PubMed  Google Scholar 

  25. Liang XJ, Shen DW, Garfield S, Gottesman MM (2003) Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res 63(18):5909–5916

    CAS  PubMed  Google Scholar 

  26. Qin Q, Xiao X, Xie Z (2010) Effect of neferine combined with mdr-1shRNA on the expression of mdr-1/P-gp in K562/A02 cell line. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35(5):445–450

    CAS  PubMed  Google Scholar 

  27. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88

    Article  CAS  PubMed  Google Scholar 

  28. Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng X, Xia B, Lin J (2012) Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8(8):1215–1226. doi:10.4161/auto.20284

    Article  CAS  PubMed  Google Scholar 

  29. Negoro K, Yamano Y, Fushimi K, Saito K, Nakatani K, Shiiba M, Yokoe H, Bukawa H, Uzawa K, Wada T (2007) Establishment and characterization of a cisplatin-resistant cell line, KB-R, derived from oral carcinoma cell line KB. Int J Oncol 30(6):1325–1332

    CAS  PubMed  Google Scholar 

  30. Zhang X, Yashiro M, Qiu H, Nishii T, Matsuzaki T, Hirakawa K (2010) Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res 30(3):915–921

    PubMed  Google Scholar 

  31. Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, Go NE, DeVorkin L, Weppler SA, Gelmon K, Yapp DT, Bally MB, Gorski SM (2014) Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res 20(12):3159–3173. doi:10.1158/1078-0432.CCR-13-2060

    Article  CAS  PubMed  Google Scholar 

  32. Seebacher NA, Richardson DR, Jansson PJ (2015) Glucose modulation induces reactive oxygen species and increases Pgp-mediated multidrug-resistance to chemotherapeutics. Br J Pharmacol. doi:10.1111/bph.13079

    PubMed  Google Scholar 

  33. Zhang W, Ling V (2000) Cell-cycle-dependent turnover of P-glycoprotein in multidrug-resistant cells. J Cell Physiol 184(1):17–26

    Article  CAS  PubMed  Google Scholar 

  34. Lee YK, Lin TH, Chang CF, Lo YL (2013) Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via beta-catenin/GSK-3beta modulation in colorectal carcinoma. PLoS ONE 8(11):e82478

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mazzanti R, Platini F, Bottini C, Fantappie O, Solazzo M, Tessitore L (2009) Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDR-positive human hepatocellular carcinoma cell line. Biochem Pharmacol 78(1):21–32

    Article  CAS  PubMed  Google Scholar 

  36. Ciucci A, Gianferretti P, Piva R, Guyot T, Snape TJ, Roberts SM, Santoro MG (2006) Induction of apoptosis in estrogen receptor-negative breast cancer cells by natural and synthetic cyclopentenones: role of the IkappaB kinase/nuclear factor-kappaB pathway. Mol Pharmacol 70(5):1812–1821. doi:10.1124/mol.106.025759

    Article  CAS  PubMed  Google Scholar 

  37. Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1(5):629–649

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Shibata A, Nagaya T, Imai T, Funahashi H, Nakao A, Seo H (2002) Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat 73(3):237–243

    Article  CAS  PubMed  Google Scholar 

  39. Radhakrishnan SK, Kamalakaran S (2006) Pro-apoptotic role of NF-κB: implications for cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1766(1):53–62

    Article  CAS  Google Scholar 

  40. Fan C, Yang J, Engelhardt JF (2002) Temporal pattern of NFκB activation influences apoptotic cell fate in a stimuli-dependent fashion. J Cell Sci 115(24):4843–4853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by National Science Foundation of China Grant 81372575 (ML), Science and Technology Support Program of Gansu Province Grant 1204FKCA172 (ML), the Program for Changjiang Scholars and Innovative Research Team in University grant IRT1137 (ML), the Fundamental Research Funds for the Central Universities grant lzujbky-2015-162 (CYW) and the National Institute of Health Grants HL71895 and HL085769 (JFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of Interest

The authors claim no relevant conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lh., Yang, Aj., Wang, M. et al. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis 21, 473–488 (2016). https://doi.org/10.1007/s10495-016-1214-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1214-9

Keywords

Navigation