Skip to main content

Advertisement

Log in

SZC017, a novel oleanolic acid derivative, induces apoptosis and autophagy in human breast cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Oleanolic acid (OA) and its derivatives such as 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), CDDO-Me, and CDDO-Im show potent anticancer function. In this study, we elucidated the anticancer effect of SZC017, a novel OA derivative and identified the mechanisms by which SZC017 induces MCF-7 cell death. We found that SZC017 effectively decreased the cell viability of these breast cancer cells, but was less toxic to MCF10A mammary epithelial cells. Mechanisms underlying the inhibition of cell viability are apoptosis, autophagy induction, and G0/G1 phase arrest. SZC017 treatment suppressed the levels of Akt, phosphorylated-Akt (p-Akt), p-IκBα, total p65, and total p-p65, in addition to p-p65 in both the cytoplasm and nucleus. Furthermore, the inhibition of p65 nuclear translocation was confirmed by immunofluorescence staining. Cell viability was increased after pretreatment with chloroquine, an inhibitor of autophagy, whereas the level of procaspase-3 was significantly decreased. A concentration-dependent increase in the intracellular reactive oxygen species (ROS) level was observed in both MCF-7 and MDA-MB-231 cells. Additionally, pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, increased cell viability and the expression of Akt and procaspase-3, but decreased the ratio of LC3-II/I. These data show that SZC017 is an effectively selective anticancer agent against breast cancer cells, highlighting the potential use of this derivative as a breast cancer therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64(4):252–271. doi:10.3322/caac.21235

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  3. Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN (2013) Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis 34(2):277–286. doi:10.1093/carcin/bgs351

    Article  CAS  PubMed  Google Scholar 

  4. Liby KT, Sporn MB (2012) Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev 64(4):972–1003. doi:10.1124/pr.111.004846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett 346(2):206–216. doi:10.1016/j.canlet.2014.01.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sheng H, Sun H (2011) Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 28(3):543–593. doi:10.1039/c0np00059k

    Article  CAS  PubMed  Google Scholar 

  7. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2):203–210

    Article  CAS  PubMed  Google Scholar 

  8. Heinlein C, Deppert W, Braithwaite AW, Speidel D (2010) A rapid and optimization-free procedure allows the in vivo detection of subtle cell cycle and ploidy alterations in tissues by flow cytometry. Cell cycle 9(17):3584–3590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101(52):18030–18035. doi:10.1073/pnas.0408345102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Allouche Y, Warleta F, Campos M, Sanchez-Quesada C, Uceda M, Beltran G, Gaforio JJ (2011) Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J Agric Food Chem 59(1):121–130. doi:10.1021/jf102319y

    Article  CAS  PubMed  Google Scholar 

  11. Call JA, Eckhardt SG, Camidge DR (2008) Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol 9(10):1002–1011. doi:10.1016/s1470-2045(08)70209-2

    Article  CAS  PubMed  Google Scholar 

  12. Raisova M, Hossini AM, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE, Geilen CC (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117(2):333–340. doi:10.1046/j.0022-202x.2001.01409.x

    Article  CAS  PubMed  Google Scholar 

  13. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326. doi:10.1016/j.cell.2010.01.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8(6):569–581. doi:10.1038/sj.cdd.4400852

    Article  CAS  PubMed  Google Scholar 

  15. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Stromhaug PE, Klionsky DJ (2001) Approaching the molecular mechanism of autophagy. Traffic 2(8):524–531

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Zheng L, Zhong J, Wu N, Liu G, Lin X (2014) Oleanolic acid induces protective autophagy in cancer cells through the JNK and mTOR pathways. Oncol Rep 32(2):567–572. doi:10.3892/or.2014.3239

    PubMed  Google Scholar 

  18. Qiu P, Guan H, Dong P, Li S, Ho CT, Pan MH, McClements DJ, Xiao H (2011) The p53-, Bax- and p21-dependent inhibition of colon cancer cell growth by 5-hydroxy polymethoxyflavones. Mol Nutr Food Res 55(4):613–622. doi:10.1002/mnfr.201000269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li MH, Cha YN, Surh YJ (2006) Peroxynitrite induces HO-1 expression via PI3 K/Akt-dependent activation of NF-E2-related factor 2 in PC12 cells. Free Radic Biol Med 41(7):1079–1091. doi:10.1016/j.freeradbiomed.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  20. Sheppard K, Kinross KM, Solomon B, Pearson RB, Phillips WA (2012) Targeting PI3 kinase/AKT/mTOR signaling in cancer. Crit Rev Oncog 17(1):69–95

    Article  PubMed  Google Scholar 

  21. Kim W, Yang HJ, Youn H, Yun YJ, Seong KM, Youn B (2010) Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated HaCaT human immortalized keratinocytes. J Radiat Res 51(3):285–296

    Article  CAS  PubMed  Google Scholar 

  22. Prakobwong S, Gupta SC, Kim JH, Sung B, Pinlaor P, Hiraku Y, Wongkham S, Sripa B, Pinlaor S, Aggarwal BB (2011) Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis 32(9):1372–1380. doi:10.1093/carcin/bgr032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Buss H, Dorrie A, Schmitz ML, Hoffmann E, Resch K, Kracht M (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-κB at serine 536 is mediated by multiple protein kinases including IκB kinase (IKK)-α, IKKβ, IKKϵ, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279(53):55633–55643. doi:10.1074/jbc.M409825200

    Article  CAS  PubMed  Google Scholar 

  24. Hu J, Nakano H, Sakurai H, Colburn NH (2004) Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis 25(10):1991–2003. doi:10.1093/carcin/bgh198

    Article  CAS  PubMed  Google Scholar 

  25. Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX, Gilliland TC, Hohuan D, Santos-Sacchi J, Shadel GS (2012) Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148(4):716–726. doi:10.1016/j.cell.2011.12.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chen Y, Gibson SB (2008) Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy 4(2):246–248

    Article  CAS  PubMed  Google Scholar 

  27. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6(6):505–510. doi:10.1038/nrm1666

    Article  CAS  PubMed  Google Scholar 

  28. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507. doi:10.1038/nrc2663

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Bai H, Zhang X, Liu J, Cao P, Liao N, Zhang W, Wang Z, Hai C (2013) Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 34(6):1323–1330. doi:10.1093/carcin/bgt058

    Article  CAS  PubMed  Google Scholar 

  30. Hyer ML, Shi R, Krajewska M, Meyer C, Lebedeva IV, Fisher PB, Reed JC (2008) Apoptotic activity and mechanism of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic-acid and related synthetic triterpenoids in prostate cancer. Cancer Res 68(8):2927–2933. doi:10.1158/0008-5472.can-07-5759

    Article  CAS  PubMed  Google Scholar 

  31. Inoue S, Snowden RT, Dyer MJ, Cohen GM (2004) CDDO induces apoptosis via the intrinsic pathway in lymphoid cells. Leukemia 18(5):948–952. doi:10.1038/sj.leu.2403328

    Article  CAS  PubMed  Google Scholar 

  32. Konopleva M, Tsao T, Estrov Z, Lee RM, Wang RY, Jackson CE, McQueen T, Monaco G, Munsell M, Belmont J, Kantarjian H, Sporn MB, Andreeff M (2004) The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia. Cancer Res 64(21):7927–7935. doi:10.1158/0008-5472.can-03-2402

    Article  CAS  PubMed  Google Scholar 

  33. Ravanan P, Sano R, Talwar P, Ogasawara S, Matsuzawa S, Cuddy M, Singh SK, Rao GS, Kondaiah P, Reed JC (2011) Synthetic triterpenoid cyano enone of methyl boswellate activates intrinsic, extrinsic, and endoplasmic reticulum stress cell death pathways in tumor cell lines. Mol Cancer Ther 10(9):1635–1643. doi:10.1158/1535-7163.mct-10-0887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Conway EM, Pollefeyt S, Steiner-Mosonyi M, Luo W, Devriese A, Lupu F, Bono F, Leducq N, Dol F, Schaeffer P, Collen D, Herbert JM (2002) Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology 123(2):619–631

    Article  CAS  PubMed  Google Scholar 

  35. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421. doi:10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  36. Gerasimenko JV, Gerasimenko OV, Palejwala A, Tepikin AV, Petersen OH, Watson AJ (2002) Menadione-induced apoptosis: roles of cytosolic Ca(2+) elevations and the mitochondrial permeability transition pore. J Cell Sci 115(Pt 3):485–497

    CAS  PubMed  Google Scholar 

  37. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362. doi:10.1016/j.cell.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  38. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Chen Y, Scully M, Dawson G, Goodwin C, Xia M, Lu X, Kakkar A (2013) Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling. Thromb Haemost 109(6):1148–1157. doi:10.1160/th12-12-0935

    Article  CAS  PubMed  Google Scholar 

  40. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  41. Deeb D, Gao X, Jiang H, Janic B, Arbab AS, Rojanasakul Y, Dulchavsky SA, Gautam SC (2010) Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism. Biochem Pharmacol 79(3):350–360. doi:10.1016/j.bcp.2009.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gong K, Li W (2011) Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: a potential new treatment for hepatocellular carcinoma. Free Radic Biol Med 51(12):2259–2271. doi:10.1016/j.freeradbiomed.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  43. Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, Sethi G (2013) Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 341(2):139–149. doi:10.1016/j.canlet.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, Padhye SB, Sarkar FH (2013) Targeted regulation of PI3 K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti-Cancer Agents Med Chem 13(7):1002–1013

    Article  CAS  Google Scholar 

  45. Amiri KI, Richmond A (2005) Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 24(2):301–313. doi:10.1007/s10555-005-1579-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-kappaB: critical mechanisms in immune function and cancer. Immunol Rev 246(1):327–345. doi:10.1111/j.1600-065X.2012.01095.x

    Article  PubMed  Google Scholar 

  47. Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25(51):6887–6899. doi:10.1038/sj.onc.1209982

    Article  CAS  PubMed  Google Scholar 

  48. Chen G, Han K, Xu X, Du X, Zhang Z, Tang J, Shi M, Wang M, Li J, Cao B, Mao X (2014) An anti-leishmanial thiadiazine agent induces multiple myeloma cell apoptosis by suppressing the nuclear factor kappaB signalling pathway. Br J Cancer 110(1):63–70. doi:10.1038/bjc.2013.711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Murray RZ, Norbury C (2000) Proteasome inhibitors as anti-cancer agents. Anticancer Drugs 11(6):407–417

    Article  CAS  PubMed  Google Scholar 

  50. Bredholt T, Dimba EA, Hagland HR, Wergeland L, Skavland J, Fossan KO, Tronstad KJ, Johannessen AC, Vintermyr OK, Gjertsen BT (2009) Camptothecin and khat (Catha edulis Forsk.) induced distinct cell death phenotypes involving modulation of c-FLIPL, Mcl-1, procaspase-8 and mitochondrial function in acute myeloid leukemia cell lines. Mol Cancer 8:101. doi:10.1186/1476-4598-8-101

    Article  PubMed Central  PubMed  Google Scholar 

  51. Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, Ye WC (2013) Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis 34(6):1331–1342. doi:10.1093/carcin/bgt060

    Article  CAS  PubMed  Google Scholar 

  52. Roy R, Kumar D, Chakraborty B, Chowdhury C, Das P (2013) Apoptotic and autophagic effects of Sesbania grandiflora flowers in human leukemic cells. PLoS One 8(8):e71672. doi:10.1371/journal.pone.0071672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, Liu G, Lin X (2014) Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem 25(11):1154–1160. doi:10.1016/j.jnutbio.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  54. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760. doi:10.1038/sj.emboj.7601623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. doi:10.1038/cdd.2010.191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329. doi:10.1038/cdd.2008.51

    Article  CAS  PubMed  Google Scholar 

  57. Jiang Q, Wang Y, Li T, Shi K, Li Z, Ma Y, Li F, Luo H, Yang Y, Xu C (2011) Heat shock protein 90-mediated inactivation of nuclear factor-kappaB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol Biol Cell 22(8):1167–1180. doi:10.1091/mbc.E10-10-0860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29(10):2594–2608. doi:10.1128/mcb.01396-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281(41):30373–30382. doi:10.1074/jbc.M602097200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 30772601) and the University Innovation Team Project Foundation of Education Department of Liaoning Province (No. LT2013019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyao Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Wang, Y., Xu, Z. et al. SZC017, a novel oleanolic acid derivative, induces apoptosis and autophagy in human breast cancer cells. Apoptosis 20, 1636–1650 (2015). https://doi.org/10.1007/s10495-015-1179-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1179-0

Keywords

Navigation