Skip to main content

Advertisement

Log in

Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

During embryonic development, melanoblasts, the precursors of melanocytes, emerge from a subpopulation of the neural crest stem cells and migrate to colonize skin. Melanomas arise during melanoblast differentiation into melanocytes and from young proliferating melanocytes through somatic mutagenesis and epigenetic regulations. In the present study, we used several human melanoma cell lines from the sequential phases of melanoma development (radial growth phase, vertical growth phase and metastatic phase) to compare: (i) the frequency and efficiency of the induction of cell death via apoptosis and necroptosis; (ii) the presence of neural and cancer stem cell biomarkers as well as death receptors, DR5 and FAS, in both adherent and spheroid cultures of melanoma cells; (iii) anti-apoptotic effects of the endogenous production of cytokines and (iv) the ability of melanoma cells to perform neural trans-differentiation. We demonstrated that programed necrosis or necroptosis, could be induced in two metastatic melanoma lines, FEMX and OM431, while the mitochondrial pathway of apoptosis was prevalent in a vast majority of melanoma lines. All melanoma lines used in the current study expressed substantial levels of pluripotency markers, SOX2 and NANOG. There was a trend for increasing expression of Nestin, an early neuroprogenitor marker, during melanoma progression. Most of the melanoma lines, including WM35, FEMX and A375, can grow as a spheroid culture in serum-free media with supplements. It was possible to induce neural trans-differentiation of 1205Lu and OM431 melanoma cells in serum-free media supplemented with insulin. This was confirmed by the expression of neuronal markers, doublecortin and β3-Tubulin, by significant growth of neurites and by the negative regulation of this process by a dominant-negative Rac1N17. These results suggest a relative plasticity of differentiated melanoma cells and a possibility for their neural trans-differentiation without the necessity for preliminary dedifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

ERK1/2:

Extracellular-signal-regulated kinases

FACS:

Fluorescence-activated cell sorter

FGF2:

Fibroblast growth factor-2 (basic)

IκB:

Inhibitor of NF-κB

IKK:

Inhibitor nuclear factor kappa B kinase

JNK:

C-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

NF-κB:

Nuclear factor kappa B

NSC:

Neural stem cells

PARP-1:

Poly (ADP-ribose) polymerase-1

PI:

Propidium iodide

PI3K:

Phosphoinositide 3-kinase

STAT:

Signal transducers and activators of transcription

TNFα:

Tumor necrosis factor

zVAD:

Carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone

References

  1. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  2. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20. doi:10.1038/ng1054

    Article  CAS  PubMed  Google Scholar 

  3. Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–341. doi:10.1046/j.0022-202X.2004.22243.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147. doi:10.1056/NEJMoa050092

    Article  CAS  PubMed  Google Scholar 

  5. Tsao H, Zhang X, Fowlkes K, Haluska FG (2000) Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 60:1800–1804

    CAS  PubMed  Google Scholar 

  6. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150:251–263. doi:10.1016/j.cell.2012.06.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Vultur A, Villanueva J, Herlyn M (2011) Targeting BRAF in Advanced Melanoma: a First Step toward Manageable Disease. Clin Cancer Res 17:1658–1663. doi:10.1158/1078-0432.ccr-10-0174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17:6958–6962. doi:10.1158/1078-0432.CCR-11-1595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi:10.1056/NEJMoa1302369

    Article  CAS  PubMed  Google Scholar 

  10. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur AG (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516. doi:10.1056/NEJMoa1103782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819. doi:10.1056/NEJMoa1002011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221. doi:10.1016/j.cell.2009.12.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Vultur A, Villanueva J, Krepler C, Rajan G, Chen Q, Xiao M, Li L, Gimotty PA, Wilson M, Hayden J, Keeney F, Nathanson KL, Herlyn M (2014) MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene 33:1850–1861. doi:10.1038/onc.2013.131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Krasilnikov M, Ivanov VN, Dong J, Ronai Z (2003) ERK and PI3 K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene 22:4092–4101

    Article  CAS  PubMed  Google Scholar 

  17. Watson IR, Li L, Cabeceiras PK, Mahdavi M, Gutschner T, Genovese G, Wang G, Fang Z, Tepper JM, Stemke-Hale K, Tsai KY, Davies MA, Mills GB, Chin L (2014) The RAC1 P29S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF. Cancer Res 74:4845–4852. doi:10.1158/0008-5472.CAN-14-1232-T

    Article  CAS  PubMed  Google Scholar 

  18. Martz CA, Ottina KA, Singleton KR, Singleton KR, Jasper JS, Wardell SE, Peraza-Penton A, Anderson GR, Winter PS, Wang T, Alley HM, Kwong LN, Cooper ZA, Tetzlaff M, Chen PL, Rathmell JC, Flaherty KT, Wargo JA, McDonnell DP, Sabatini DM, Wood KC (2014) Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal 7:ra121. doi:10.1126/scisignal.aaa1877

    Article  PubMed  Google Scholar 

  19. Held MA, Langdon CG, Platt JT, Graham-Steed T, Liu Z, Chakraborty A, Bacchiocchi A, Koo A, Haskins JW, Bosenberg MW, Stern DF (2013) Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discov 3:52–67. doi:10.1158/2159-8290.CD-12-0408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81. doi:10.1126/science.1260825

    Article  CAS  PubMed  Google Scholar 

  21. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768. doi:10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  22. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296. doi:10.1016/j.ccr.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  23. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291. doi:10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  24. Smalley KS, Herlyn M (2009) Integrating tumor-initiating cells into the paradigm for melanoma targeted therapy. Int J Cancer 124:1245–1250. doi:10.1002/ijc.24129

    Article  CAS  PubMed  Google Scholar 

  25. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349. doi:10.1038/nature06489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598. doi:10.1038/nature07567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Held MA, Curley DP, Dankort D, McMahon M, Muthusamy V, Bosenberg MW (2010) Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res 70:388–397. doi:10.1158/0008-5472.CAN-09-2153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137. doi:10.1038/nature09161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lang D, Mascarenhas JB, Shea CR (2013) Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol 31:166–178. doi:10.1016/j.clindermatol.2012.08.014

    Article  PubMed Central  PubMed  Google Scholar 

  30. Murphy GF, Wilson BJ, Girouard SD, Frank NY, Frank MH (2014) Stem cells and targeted approaches to melanoma cure. Molecular Asp Med 39C:33–49. doi:10.1016/j.mam.2013.10.003

    Article  Google Scholar 

  31. Redmer T, Welte Y, Behrens D, Fichtner I, Przybilla D, Wruck W, Yaspo ML, Lehrach H, Schafer R, Regenbrecht CR (2014) The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS ONE 9:e92596. doi:10.1371/journal.pone.0092596

    Article  PubMed Central  PubMed  Google Scholar 

  32. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20:102–107. doi:10.1038/modpathol.3800720

    Article  CAS  PubMed  Google Scholar 

  33. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118:1979–1990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  35. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  36. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714. doi:10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  37. Vultur A, Herlyn M (2013) SnapShot: melanoma. Cancer Cell 23(706–706):e701. doi:10.1016/j.ccr.2013.05.001

    Google Scholar 

  38. Satyamoorthy K, DeJesus E, Linnenbach AJ, Kraj B, Kornreich DL, Rendle S, Elder DE, Herlyn M (1997) Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res 7(Suppl 2):S35–42

    CAS  PubMed  Google Scholar 

  39. Myklebust AT, Helseth A, Breistol K, Hall WA, Fodstad O (1994) Nude rat models for human tumor metastasis to CNS. Procedures for intracarotid delivery of cancer cells and drugs. J Neurooncol 21:215–224

    Article  CAS  PubMed  Google Scholar 

  40. Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL, Herlyn M, Smalley KS (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14:230–239. doi:10.1158/1078-0432.CCR-07-1440

    Article  CAS  PubMed  Google Scholar 

  41. Peter ME, Legembre P, Barnhart BC (2005) Does CD95 have tumor promoting activities? Biochim Biophys Acta 1755:25–36

    CAS  PubMed  Google Scholar 

  42. Kunisada T, Tezulka K, Aoki H, Motohashi T (2014) The stemness of neural crest cells and their derivatives. Birth Defects Res Part C 102:251–262. doi:10.1002/bdrc.21079

    Article  CAS  Google Scholar 

  43. Juhasz I, Albelda SM, Elder DE, Murphy GF, Adachi K, Herlyn D, Valyi-Nagy IT, Herlyn M (1993) Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. Am J Pathol 143:528–537

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M (2003) Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63:756–759

    CAS  PubMed  Google Scholar 

  45. Tamada K, Chen L (2006) Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 55:355–362. doi:10.1007/s00262-005-0081-y

    Article  CAS  PubMed  Google Scholar 

  46. Ivanov VN, Hei TK (2014) A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis 19:399–413. doi:10.1007/s10495-013-0925-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337. doi:10.1158/0008-5472.CAN-05-1343

    Article  CAS  PubMed  Google Scholar 

  48. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141. doi:10.1101/cshperspect.a000141

    Article  PubMed Central  PubMed  Google Scholar 

  49. Franke TF (2008) PI3 K/Akt: getting it right matters. Oncogene 27:6473–6488. doi:10.1038/onc.2008.313

    Article  CAS  PubMed  Google Scholar 

  50. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.1016/j.cell.2010.01.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ivanov VN, Hei TK (2014) Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis 19:1736–1754. doi:10.1007/s10495-014-1040-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Grivennikov S, Karin M (2008) Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13:7–9

    Article  CAS  PubMed  Google Scholar 

  53. Ivanov VN, Hei TK (2004) Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 279:22747–22758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O (2007) Rac1 activity regulates proliferation of aggressive metastatic melanoma. Exp Cell Res 313:3832–3839. doi:10.1016/j.yexcr.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  55. Chun KS, Surh YJ (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 68:1089–1100

    Article  CAS  PubMed  Google Scholar 

  56. Ivanov VN, Partridge MA, Huang SX, Hei TK (2011) Suppression of the proinflammatory response of metastatic melanoma cells increases TRAIL-induced apoptosis. J Cell Biochem 112:463–475. doi:10.1002/jcb.22934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U, Hauptmann S (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308

    CAS  PubMed  Google Scholar 

  58. Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M, Smalley KS, Mahale A, Eroshkin A, Aaronson S, Ronai Z (2007) Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell 11:447–460. doi:10.1016/j.ccr.2007.03.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-beta. Cancer Res 72:4119–4129. doi:10.1158/0008-5472.CAN-12-0546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Grabham PW, Reznik B, Goldberg DJ (2003) Microtubule and Rac 1-dependent F-actin in growth cones. J Cell Sci 116:3739–3748. doi:10.1242/jcs.00686

    Article  CAS  PubMed  Google Scholar 

  61. Vadodaria KC, Brakebusch C, Suter U, Jessberger S (2013) Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci 33:1179–1189. doi:10.1523/JNEUROSCI.2103-12.2013

    Article  CAS  PubMed  Google Scholar 

  62. Ivanov VN, Krasilnikov M, Ronai Z (2002) Regulation of Fas expression by STAT3 and c-Jun is mediated by phosphatidylinositol 3-kinase-AKT signaling. J Biol Chem 277:4932–4944

    Article  CAS  PubMed  Google Scholar 

  63. Nishimura EK (2011) Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 24:401–410. doi:10.1111/j.1755-148X.2011.00855.x

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Fukunaga-Kalabis M, Li L, Herlyn M (2014) Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. doi:10.1016/j.abb.2014.07.023

    Google Scholar 

  65. Yang R, Zheng Y, Li L, Liu S, Burrows M, Wei Z, Nace A, Herlyn M, Cui R, Guo W, Cotsarelis G, Xu X (2014) Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors. Nat Commun 5:5807. doi:10.1038/ncomms6807

    Article  CAS  PubMed  Google Scholar 

  66. Uong A, Zon LI (2010) Melanocytes in development and cancer. J Cell Physiol 222:38–41. doi:10.1002/jcp.21935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20:2149–2182

    Article  CAS  PubMed  Google Scholar 

  68. Cheli Y, Giuliano S, Botton T, Rocchi S, Hofman V, Hofman P, Bahadoran P, Bertolotto C, Ballotti R (2011) Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30:2307–2318. doi:10.1038/onc.2010.598

    Article  CAS  PubMed  Google Scholar 

  69. Santini R, Pietrobono S, Pandolfi S, Montagnani V, D’Amico M, Penachioni JY, Vinci MC, Borgognoni L, Stecca B (2014) SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene 33:4697–4708. doi:10.1038/onc.2014.71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Laga AC, Zhan Q, Weishaupt C, Ma J, Frank MH, Murphy GF (2011) SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study. Exp Dermatol 20:339–345. doi:10.1111/j.1600-0625.2011.01247.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z (2003) FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 23:3623–3635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281:1840–1852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, Reed JC, Bredesen DE, Sato TA (1999) Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Lett 460:191–198

    Article  CAS  PubMed  Google Scholar 

  74. Ramgolam K, Lauriol J, Lalou C, Lauden L, Michel L, de la Grange P, Khatib AM, Aoudjit F, Charron D, Alcaide-Loridan C, Al-Daccak R (2011) Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS ONE 6:e18784. doi:10.1371/journal.pone.0018784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W, Xu X (2012) Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 31:4898–4911. doi:10.1038/onc.2011.656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Reed RJ, Leonard DD (1979) Neurotropic melanoma. A variant of desmoplastic melanoma. Am J Surg Pathol 3:301–311

    Article  CAS  PubMed  Google Scholar 

  77. Su A, Dry SM, Binder SW, Said J, Shintaku P, Sarantopoulos GP (2014) Malignant melanoma with neural differentiation: an exceptional case report and brief review of the pertinent literature. Am J Dermatopathol 36:e5–9. doi:10.1097/DAD.0b013e31828cf90a

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK, Speicher DW (2014) Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy. doi:10.4161/15548627.2014.984273

    Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Peter Grabham and Howard Lieberman for advice, critical reading of the manuscript and discussion. This work was supported by Pilot Grant of the Department of Dermatology, Columbia University (P30AR044531-11, Project GG006336) and NIH Grant 5R01-ES12888-07.

Conflict of interest

The authors declare that there are no conflicts of interest.

Compliance with Ethical Standards

Animals were not used in this research. Participation of human subjects did not occur in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Ivanov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.N., Hei, T.K. Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis 20, 996–1015 (2015). https://doi.org/10.1007/s10495-015-1131-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1131-3

Keywords

Navigation