Skip to main content
Log in

5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recent studies have proposed the potential role of 5-HT2B receptor (5-HT2BR) blockade in alleviating myocardial dysfunction; hitherto, the regulatory pathway for its protective effect has remained enigmatic. In the present study, we sought to investigate the role of SB-204741, a 5-HT2BR blocker in isoproterenol-induced myocardial remodeling in rats and its cross-talk with apoptosis and mitogen activated protein kinase (MAPKs)/heat shock proteins (HSPs) pathway. To assess this hypothesis, we measured the effect of SB-204741 (0.25–1.0 mg/kg/day, i.p.) in isoproterenol (85 mg/kg/day, s.c.)-induced myocardial remodeling in rats. SB-204741 dose dependently improved hemodynamic and ventricular functions following isoproterenol-induced myocardial injury. This amelioration was well substantiated with reduced expression of 5-HT2B, inflammatory proteins (NF-κBp65, IKK-β, TNF-α, IL-6, and Cox-2), MAPKs (p-p38/p38 and p-JNK/JNK ratio) accompanied with increased protein expression of HSPs (αB-crystallin, Hsp27 and Hsp70), autophagy (LC3 and Beclin-1) and p-ERK/ERK ratio. Additionally, SB-204741 inhibited apoptotic signaling pathway as there was decreased DAPI/TUNEL positivity and protein expression of cytochrome c, Bax, and caspase-3 along with increased Bcl-2 expression. Preservation of histopathological and ultrastructural components, normalization of nitric oxide level, endogenous antioxidants and myocyte injury marker enzymes were also observed. In conclusion, inhibition of apoptosis via modulation of MAPKs/HSPs is essential for 5-HT2BR blockade mediated cardioprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383

    Article  CAS  PubMed  Google Scholar 

  3. Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    Article  CAS  PubMed  Google Scholar 

  4. Willis MS, Patterson C (2010) Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122:1740–1751

    Article  PubMed Central  PubMed  Google Scholar 

  5. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    CAS  PubMed  Google Scholar 

  6. Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35:1385–1394

    Article  CAS  PubMed  Google Scholar 

  7. Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91:776–781

    Article  CAS  PubMed  Google Scholar 

  8. Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    Article  CAS  PubMed  Google Scholar 

  9. Ghayour-Mobarhan M, Saber H, Ferns GA (2012) The potential role of heat shock protein 27 in cardiovascular disease. Clin Chim Acta 413:15–24

    Article  CAS  PubMed  Google Scholar 

  10. Ghayour-Mobarhan M, Rahsepar AA, Tavallaie S, Rahsepar S, Ferns GA (2009) The potential role of heat shock proteins in cardiovascular disease: evidence from in vitro and in vivo studies. Adv Clin Chem 48:27–72

    Article  CAS  PubMed  Google Scholar 

  11. Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K (2009) The role of autophagy in the heart. Cell Death Differ 16:31–38

    Article  CAS  PubMed  Google Scholar 

  13. Ramage AG, Villalón CM (2008) 5-hydroxytryptamine and cardiovascular regulation. Trends Pharmacol Sci 29:472–481

    Article  CAS  PubMed  Google Scholar 

  14. Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M et al (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97:9508–9513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Monassier L, Laplante MA, Jaffré F, Bousquet P, Maroteaux L et al (2008) Serotonin 5-HT(2B) receptor blockade prevents reactive oxygen species-induced cardiac hypertrophy in mice. Hypertension 52:301–307

    Article  CAS  PubMed  Google Scholar 

  16. Launay JM, Hervé P, Peoc’h K, Tournoi C, Callebert J et al (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    Article  CAS  PubMed  Google Scholar 

  17. Nebigil CG, Jaffré F, Messaddeq N, Hickel P, Monassier L et al (2003) Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 107:3223–3229

    Article  CAS  PubMed  Google Scholar 

  18. Liang YJ, Lai LP, Wang BW, Juang SJ, Chang CM et al (2006) Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovasc Res 72:303–312

    Article  CAS  PubMed  Google Scholar 

  19. Ojaimi C, Qanud K, Hintze TH, Recchia FA (2007) Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics 29:76–83

    Article  CAS  PubMed  Google Scholar 

  20. Robiolio PA, Rigolin VH, Wilson JS, Harrison JK, Sanders LL et al (1995) Carcinoid heart disease. Correlation of high serotonin levels with valvular abnormalities detected by cardiac catheterization and echocardiography. Circulation 92:790–795

    Article  CAS  PubMed  Google Scholar 

  21. Fonfara S, Hetzel U, Oyama MA, Kipar A (2014) The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy. Vet J 199:406–412

    Article  CAS  PubMed  Google Scholar 

  22. Oxford AW, Borman RA, Coleman RA, Clark KL, Hynd G et al (2005) USPTO Application 20050176791

  23. Watts SW, Fink GD (1999) 5-HT2B-receptor antagonist LY-272015 is antihypertensive in DOCA-salt-hypertensive rats. Am J Physiol 276:H944–H952

    CAS  PubMed  Google Scholar 

  24. Forbes IT, Jones GE, Murphy OE, Holland V, Baxter GS (1995) N-(1-methyl-5-indolyl)-N’-(3-methyl-5-isothiazolyl) urea: a novel, high-affinity 5-HT2B receptor antagonist. J Med Chem 38:855–857

    Article  CAS  PubMed  Google Scholar 

  25. Bai CF, Liu JC, Zhao R, Cao W, Liu SB et al (2010) Role of 5-HT2B receptors in cardiomyocyte apoptosis in noradrenaline-induced cardiomyopathy in rats. Clin Exp Pharmacol Physiol 37:e145–e151

    Article  CAS  PubMed  Google Scholar 

  26. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  28. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  29. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS et al (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  30. Goyal S, Bharti S, Sahoo KC, Sharma AK, Arya DS (2011) Valsartan, an angiotensin II receptor blocker, attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. Cardiovasc Toxicol 11:148–156

    Article  CAS  PubMed  Google Scholar 

  31. Rani N, Bharti S, Manchanda M, Nag TC, Ray R et al (2013) Regulation of heat shock proteins 27 and 70, p-Akt/p-eNOS and MAPKs by naringin dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion. PLoS ONE 8:e82577

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kondo T, Ogawa Y, Sugiyama S, Ito T, Satake T et al (1987) Mechanism of isoproterenol induced myocardial damage. Cardiovasc Res 21:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Pfeifer U, Fohr J, Wilhelm W, Dammrich J (1987) Short-term inhibition of cardiac cellular autophagy by isoproterenol. J Mol Cell Cardiol 19:1179–1184

    Article  CAS  PubMed  Google Scholar 

  34. Ullmer C, Boddeke HG, Schmuck K, Lübbert H (1996) 5-HT2B receptor-mediated calcium release from ryanodine-sensitive intracellular stores in human pulmonary artery endothelial cells. Br J Pharmacol 117:1081–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. GorzaL Menabò R, Vitadello M, Bergamini CM, Di Lisa F (1996) Cardiomyocyte troponin T immunoreactivity is modified by cross-linking resulting from intracellular calcium overload. Circulation 93:1896–1904

    Article  Google Scholar 

  36. Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Shingala JR, Balaraman R (2005) Antihypertensive effect of 5-HT1A agonist buspirone and 5-HT2B antagonists in experimentally induced hypertension in rats. Pharmacology 73:129–139

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566

    Article  CAS  PubMed  Google Scholar 

  39. Zhuo XZ, Wu Y, Ni YJ, Liu JH, Gong M et al (2013) Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis 18:800–810

    Article  CAS  PubMed  Google Scholar 

  40. JaffréF Callebert J, Sarre A, Etienne N, Nebigil CG et al (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 110:969–974

    Article  Google Scholar 

  41. Djavaheri-Mergny M, Codogno P (2007) Autophagy joins the game to regulate NF-kappaB signaling pathways. Cell Res 17:576–577

    Article  CAS  PubMed  Google Scholar 

  42. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C et al (2007) Regulation of autophagy by NFkappaB transcription factor and reactive oxygen species. Autophagy 3:390–392

    Article  CAS  PubMed  Google Scholar 

  43. Mei Y, Thompson MD, Cohen RA, Tong X (2014) Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.05.005; [Epub ahead of print]

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Deepak and Mr. BM Sharma for their technical assistance during the course of the surgery and in the preparation of histopathological slides and the Department of Science and Technology, Govt. of India for providing fellowship to Saurabh Bharti (IF10332) and Neha Rani (IF120584) under the INSPIRE-DST-Fellowship programme.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharamvir Singh Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, S., Rani, N., Bhatia, J. et al. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis 20, 455–465 (2015). https://doi.org/10.1007/s10495-014-1083-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1083-z

Keywords

Navigation