Skip to main content
Log in

Structural insight into CIDE domains: the Janus face of CIDEs

  • The Domains of Apoptosis and Inflammation
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cell-death inducing DFF45-like effect domain (CIDE domain) is a protein interaction module that was initially found in DNA fragmentation factor (DFF) proteins DFF40 and DFF45. Several other CIDE-containing proteins, CIDE-A, CIDE-B, and CIDE-3, have since been identified in humans. Although the main function of these proteins is associated with apoptosis, recent studies have identified roles of CIDE-containing proteins in energy metabolism, especially involvement in control of the size of lipid droplets. Because CIDE-containing proteins perform critical tasks in apoptosis and energy metabolism and have been linked to many human diseases including cancer and obesity, studies of CIDE domains and CIDE-containing proteins are of great biological importance. This review summarizes the structural insight into CIDE and the CIDE–CIDE complex and speculates on a generalized strategy for the CIDE–CIDE interaction based on the available CIDE structures and molecular modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Batistatou A, Greene LA (1993) Internucleosomal DNA cleavage and neuronal cell survival/death. J Cell Biol 122:523–532

    Article  CAS  PubMed  Google Scholar 

  2. Lugovskoy AA, Zhou P, Chou JJ, McCarty JS, Li P et al (1999) Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Cell 99:747–755

    Article  CAS  PubMed  Google Scholar 

  3. Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G (2001) Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci USA 98:6051–6055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Article  CAS  PubMed  Google Scholar 

  5. Sakahira H, Enari M, Nagata S (1999) Functional differences of two forms of the inhibitor of caspase-activated DNase, ICAD-L, and ICAD-S. J Biol Chem 274:15740–15744

    Article  CAS  PubMed  Google Scholar 

  6. Sabol SL, Li R, Lee TY, Abdul-Khalek R (1998) Inhibition of apoptosis-associated DNA fragmentation activity in nonapoptotic cells: the role of DNA fragmentation factor-45 (DFF45/ICAD). Biochem Biophys Res Commun 253:151–158

    Article  CAS  PubMed  Google Scholar 

  7. Gu J, Dong RP, Zhang C, McLaughlin DF, Wu MX et al (1999) Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J Biol Chem 274:20759–20762

    Article  CAS  PubMed  Google Scholar 

  8. Inohara N, Koseki T, Chen S, Wu X, Nunez G (1998) CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J 17:2526–2533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen Z, Guo K, Toh SY, Zhou Z, Li P (2000) Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis. J Biol Chem 275:22619–22622

    Article  CAS  PubMed  Google Scholar 

  10. Liang L, Zhao M, Xu Z, Yokoyama KK, Li T (2003) Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J 370:195–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T et al (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lin SC, Li P (2004) CIDE-A, a novel link between brown adipose tissue and obesity. Trends Mol Med 10:434–439

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP et al (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49–56

    Article  PubMed  Google Scholar 

  14. Li JZ, Ye J, Xue B, Qi J, Zhang J et al (2007) Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56:2523–2532

    Article  CAS  PubMed  Google Scholar 

  15. Park OK, Park HH (2012) Dual apoptotic DNA fragmentation system in the fly: Drep2 is a novel nuclease of which activity is inhibited by Drep3. FEBS Lett 586:3085–3089

    Article  CAS  PubMed  Google Scholar 

  16. Lee SM, Park HH (2014) In vitro analysis of the complete CIDE domain interactions of the Drep system in fly. Apoptosis 19:428–435

    Article  CAS  PubMed  Google Scholar 

  17. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  18. Yonezawa T, Kurata R, Kimura M, Inoko H (2011) Which CIDE are you on? Apoptosis and energy metabolism. Mol BioSyst 7:91–100

    Article  CAS  PubMed  Google Scholar 

  19. Otomo T, Sakahira H, Uegaki K, Nagata S, Yamazaki T (2000) Structure of the heterodimeric complex between CAD domains of CAD and ICAD. Nat Struct Biol 7:658–662

    Article  CAS  PubMed  Google Scholar 

  20. Sun Z, Gong J, Wu H, Xu W, Wu L et al (2013) Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4:1594

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lee SM, Jang TH, Park HH (2013) Molecular basis for homo-dimerization of the CIDE domain revealed by the crystal structure of the CIDE-N domain of FSP27. Biochem Biophys Res Commun 439:564–569

    Article  CAS  PubMed  Google Scholar 

  22. Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480

    Article  CAS  PubMed  Google Scholar 

  23. Lee SM, Park HH (2013) General interaction mode of CIDE:CIDE complex revealed by a mutation study of the Drep2 CIDE domain. FEBS Lett 587:854–859

    Article  CAS  PubMed  Google Scholar 

  24. Park OK, Park HH (2013) A putative role of Drep1 in apoptotic DNA fragmentation system in fly is mediated by direct interaction with Drep2 and Drep4. Apoptosis 18:385–392

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Zou H, Widlak P, Garrard W, Wang X (1999) Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem 274:13836–13840

    Article  CAS  PubMed  Google Scholar 

  26. Cort JR, Chiang Y, Zheng D, Montelione GT, Kennedy MA (2002) NMR structure of conserved eukaryotic protein ZK652.3 from C. elegans: a ubiquitin-like fold. Proteins 48:733–736

    Article  CAS  PubMed  Google Scholar 

  27. Huang WC, Ko TP, Li SS, Wang AH (2004) Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins. Eur J Biochem 271:4114–4122

    Article  CAS  PubMed  Google Scholar 

  28. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sato Y, Fujita H, Yoshikawa A, Yamashita M, Yamagata A et al (2011) Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proc Natl Acad Sci USA 108:20520–20525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI13C1449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.H. Structural insight into CIDE domains: the Janus face of CIDEs. Apoptosis 20, 240–249 (2015). https://doi.org/10.1007/s10495-014-1067-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1067-z

Keywords

Navigation