Skip to main content

Advertisement

Log in

Structural basis of cell apoptosis and necrosis in TNFR signaling

  • The Domains of Apoptosis and Inflammation
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The tumor necrosis factor receptors (TNFRs) play essential roles in innate and adaptive immunity. Depending on conditions, TNFR induces multiple cell fates including cell survival, cell apoptosis, and cell programmed necrosis. Here, we review recent progress in structural studies of the TNFR signaling pathway. The structural basis for the high order signal complexes, including the DISC, ripoptosome, necrosome, and RIP3/MLKL complex, may provide novel insights for understanding the biophysical principles of cell signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756

    Article  CAS  PubMed  Google Scholar 

  3. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26

    Article  CAS  PubMed  Google Scholar 

  4. Haas TL et al (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36(5):831–844

    Article  CAS  PubMed  Google Scholar 

  5. Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 244(1):9–28

    Article  CAS  PubMed  Google Scholar 

  6. Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14(11):727–736

    Article  CAS  PubMed  Google Scholar 

  7. Deng L et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361

    Article  CAS  PubMed  Google Scholar 

  8. Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26(3):253–266

    Article  CAS  PubMed  Google Scholar 

  9. Moquin D, Chan FK (2010) The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci 35(8):434–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bertrand MJ et al (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703

    Article  CAS  PubMed  Google Scholar 

  12. Tenev T et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448

    Article  CAS  PubMed  Google Scholar 

  13. Ferrao R et al (2012) Structural insights into the assembly of large oligomeric signalosomes in the toll-like receptor-interleukin-1 receptor superfamily. Sci Signal 5(226):re3

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Ferrao R, Wu H (2012) Helical assembly in the death domain (DD) superfamily. Curr Opin Struct Biol 22(2):241–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lu A et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206

    Article  CAS  PubMed  Google Scholar 

  16. Carrington PE et al (2006) The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22(5):599–610

    Article  CAS  PubMed  Google Scholar 

  17. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30(2):180–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Park HH et al (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128(3):533–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Eberstadt M et al (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392(6679):941–945

    Article  CAS  PubMed  Google Scholar 

  20. Jeong EJ et al (1999) The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J Biol Chem 274(23):16337–16342

    Article  CAS  PubMed  Google Scholar 

  21. Wang L et al (2010) The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17(11):1324–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jang TH et al (2014) Structural Study of the RIPoptosome core reveals a helical assembly for kinase recruitment. Biochemistry 53(33):5424–5431

    Article  CAS  PubMed  Google Scholar 

  23. Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Blanchard H et al (1999) The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7(9):1125–1133

    Article  CAS  PubMed  Google Scholar 

  25. Watt W et al (1999) The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  26. Siegel RM et al (1998) Death-effector filaments: novel cytoplasmic structures that recruit caspases and trigger apoptosis. J Cell Biol 141(5):1243–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Li FY et al (2006) Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 281(5):2960–2968

    Article  CAS  PubMed  Google Scholar 

  28. Yang JK et al (2005) Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20(6):939–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dickens LS et al (2012) A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 47(2):291–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schleich K et al (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 47(2):306–319

    Article  CAS  PubMed  Google Scholar 

  31. Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153(2):287–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Qiao Q et al (2013) Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51(6):766–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kischkel FC et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Li J, Yin Q, Wu H (2013) Structural basis of signal transduction in the TNF receptor superfamily. Adv Immunol 119:135–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cho YS et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. He S et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111

    Article  CAS  PubMed  Google Scholar 

  37. Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  38. Robinson N et al (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13(10):954–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7(4):302–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11(3):290–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sun L et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  42. Zhao J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cai Z et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65

    Article  CAS  PubMed  Google Scholar 

  44. Wang H et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146

    Article  CAS  PubMed  Google Scholar 

  45. Chen X et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Blander JM (2014) A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 14(9):601–618

    Article  CAS  PubMed  Google Scholar 

  47. Sun X et al (1999) RIP3, a novel apoptosis-inducing kinase. J Biol Chem 274(24):16871–16875

    Article  CAS  PubMed  Google Scholar 

  48. Sun X et al (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277(11):9505–9511

    Article  CAS  PubMed  Google Scholar 

  49. Li J et al (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150(2):339–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Murphy JM et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    Article  CAS  PubMed  Google Scholar 

  51. Xie T et al (2013) Structural insights into RIP3-mediated necroptotic signaling. Cell Rep 5(1):70–78

    Article  CAS  PubMed  Google Scholar 

  52. Xie T et al (2013) Structural basis of RIP1 inhibition by necrostatins. Structure 21(3):493–499

    Article  CAS  PubMed  Google Scholar 

  53. Harris PA et al (2013) Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis. ACS Med Chem Lett 4(12):1238–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kufareva I, Abagyan R (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J Med Chem 51(24):7921–7932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wu B et al (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152(1–2):276–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize for incomplete citations due to space limitations. The work was supported by the National Natural Science Foundation of China (31470724 to J.L.) and the National Basic Research Program of China (2015CB943300 to J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, S., Ji, C. et al. Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis 20, 210–215 (2015). https://doi.org/10.1007/s10495-014-1061-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1061-5

Keywords

Navigation