Skip to main content

Advertisement

Log in

Apoptosis imaging studies in various animal models using radio-iodinated peptide

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis has a role in many medical disorders and treatments; hence, its non-invasive evaluation is one of the most riveting research topics. Currently annexin V is used as gold standard for imaging apoptosis. However, several drawbacks, including high background, slow body clearance, make it a suboptimum marker for apoptosis imaging. In this study, we radiolabeled the recently identified histone H1 targeting peptide (ApoPep-1) and evaluated its potential as a new apoptosis imaging agent in various animal models. ApoPep-1 (CQRPPR) was synthesized, and an extra tyrosine residue was added to its N-terminal end for radiolabeling. This peptide was radiolabeled with 124I and 131I and was tested for its serum stability. Surgery- and drug-induced apoptotic rat models were prepared for apoptosis evaluation, and PET imaging was performed. Doxorubicin was used for xenograft tumor treatment in mice, and the induced apoptosis was studied. Tumor metabolism and proliferation were assessed by [18F]FDG and [18F]FLT PET imaging and compared with ApoPep-1 after doxorubicin treatment. The peptide was radiolabeled at high purity, and it showed reasonably good stability in serum. Cell death was easily imaged by radiolabeled ApoPep-1 in an ischemia surgery model. And, liver apoptosis was more clearly identified by ApoPep-1 rather than [124I]annexin V in cycloheximide-treated models. Three doxorubicin doses inhibited tumor growth, which was evaluated by 30–40 % decreases of [18F]FDG and [18F]FLT PET uptake in the tumor area. However, ApoPep-1 demonstrated more than 200 % increase in tumor uptake after chemotherapy, while annexin V did not show any meaningful uptake in the tumor compared with the background. Biodistribution data were also in good agreement with the microPET imaging results. All of the experimental data clearly demonstrated high potential of the radiolabeled ApoPep-1 for in vivo apoptosis imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  3. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  5. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  6. Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C (2005) Vital functions for lethal caspases. Oncogene 24:5137–5148

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen QD, Challapalli A, Smith G, Fortt R, Aboagye EO (2012) Imaging apoptosis with positron emission tomography: ‘bench to bedside’ development of the caspase-3/7 specific radiotracer [18F]ICMT-11. Eur J Cancer 48:432–440

    Article  CAS  PubMed  Google Scholar 

  9. Smith G, Glaser M, Perumal M (2008) Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J Med Chem 51:8057–8067

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen QD, Smith G, Glaser M, Perumal M, Arstad E, Aboagye EO (2009) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific [18F]-labeled isatin sulfonamide. Proc Natl Acad Sci USA 106:16375–16380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95S

    Article  CAS  PubMed  Google Scholar 

  12. Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51:1659–1662

    Article  CAS  PubMed  Google Scholar 

  13. Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 34:13–26

    Article  CAS  PubMed  Google Scholar 

  14. Okarvi SM (2004) Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med Res Rev 24:357–397

    Article  CAS  PubMed  Google Scholar 

  15. Schottelius M, Wester HJ (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177

    Article  CAS  PubMed  Google Scholar 

  16. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Article  CAS  PubMed  Google Scholar 

  17. Weiner RE, Thakur ML (2001) Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med 31:296–311

    Article  CAS  PubMed  Google Scholar 

  18. de Jong M, Kwekkeboom D, Valkema R, Krenning EP (2003) Radiolabelled peptides for tumour therapy: current status and future directions. Eur J Nucl Med Mol Imaging 30:463–469

    Article  PubMed  Google Scholar 

  19. Su H, Chen G, Gangadharmath U, Gomez L, Liang Q, Mu F, Mocharla V, Szardenings A, Walsh J, Xia C-F, Yu C, Kolb H (2013) Evaluation of [18F]-CP18 as a PET imaging tracer for apoptosis. Mol Imaging Biol 15(6):739–747

    Article  PubMed  Google Scholar 

  20. Doss M, Kolb HC, Walsh JC, Mocharla V, Fan H, Chaudhary A, Zhu Z, Alpaugh RK, Lango MN, Yu JQ (2013) Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J Nucl Med 54(12):2087–2092

    Article  CAS  PubMed  Google Scholar 

  21. Wang K, Purushotham S, Lee J-Y, Na M-H, Park H, Oh S-J, Park R-W, Park JY, Lee E, Cho BC, Song M-N, Baek M-C, Kwak W, Yoo J, Hoffman AS, Oh Y-K, Kim I-S, Lee B-H (2010) In vivo imaging of tumor apoptosis using histone H1-targeting peptide. J Control Release 148:283–291

    Article  CAS  PubMed  Google Scholar 

  22. Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, Ottewell P, Watson A, Zweit J (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32(4):395–402

    Article  CAS  PubMed  Google Scholar 

  23. Hamacher K, Coenen HH, Stoecklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    CAS  PubMed  Google Scholar 

  24. Yun M, Oh SJ, Ha H-J, Ryu JS, Moon DH (2003) High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-β-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 30:151–157

    Article  CAS  PubMed  Google Scholar 

  25. Cai H, Li Z, Huang C-W, Shahinian AH, Wang H, Park R, Conti PS (2010) Evaluation of copper-64 labeled AmBaSar conjugated cyclic RGD peptide for improved MicroPET imaging of integrin αvβ3 expression. Bioconjugate Chem 21(8):1417–1424

    Article  CAS  Google Scholar 

  26. Pandya DN, Bhatt N, An GI, Ha YS, Soni N, Lee H, Lee YJ, Kim JY, Lee W, Ahn H, Yoo J (2014) Propylene cross-bridged macrocyclic bifunctional chelator: a new design for facile bioconjugation and robust 64CU complex stability. J Med Chem 57(17):7234–7243

    Article  CAS  PubMed  Google Scholar 

  27. Zuckier LS, Li Y, Chang CJ (1998) Evaluation in a mouse model of a thyroid-blocking protocol for 131I antibody therapy (short communication). Cancer Biother Radiopharm 13(6):457–460

    Article  CAS  PubMed  Google Scholar 

  28. Ha YS, Lee HY, An GI, Kim J, Kwak W, Lee E-J, Lee S-M, Lee B-H, Kim I-S, Belay T, Lee W, Ahn B-C, Lee J, Yoo J (2012) Synthesis and evaluation of a radioiodinated bladder cancer specific peptide. Bioorg Med Chem 20(14):4330–4335

    Article  CAS  PubMed  Google Scholar 

  29. Wolf H, Marschall F, Scheffold N, Clausen M, Schramm M, Henze E (1993) Iodine-123 labelling of atrial natriuretic peptide and its analogues: initial results. Eur J Nucl Med 20:297–301

    Article  CAS  PubMed  Google Scholar 

  30. Russell J, O’Donoghue JA, Finn R, Koziorowski J, Ruan S, Humm JL, Ling CC (2002) Iodination of annexin V for imaging apoptosis. J Nucl Med 43:671–677

    CAS  PubMed  Google Scholar 

  31. Zaccagnini G, Martelli F, Fasanaro P (2004) p66ShcA modulates tissue response to hindlimb ischemia. Circulation 109:2917–2923

    Article  PubMed  Google Scholar 

  32. Ledda-Columbano GM, Coni P, Faa G, Manenti G, Columbano A (1992) Rapid induction of apoptosis in rat liver by cycloheximide. Am J Pathol 140:545–549

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lu X, Hamilton JA, Shen J, Pang T, Jones DL, Potter RF, Arnold JMO, Feng Q (2006) Role of tumor necrosis factor-α in myocardial dysfunction and apoptosis during hindlimb ischemia and reperfusion. Crit Care Med 34:484–491

    Article  CAS  PubMed  Google Scholar 

  34. Kelloff GJ, Hoffman JM, Johnson B (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  CAS  PubMed  Google Scholar 

  35. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  36. Jensen MM, Erichsen KD, Bjorkling F (2010) Early detection of response to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in human ovary cancer xenografts in mice. PLoS One 5:e12965

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bakker WH, Krenning EP, Breeman WA (1990) Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity, and in vivo application in animals. J Nucl Med 31:1501–1509

    CAS  PubMed  Google Scholar 

  38. Lederle W, Arns S, Rix A (2011) Failure of annexin-based apoptosis imaging in the assessment of antiangiogenic therapy effects. EJNMMI Res 1:26

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hu S, Kiesewetter DO, Zhu L (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 14:762–770

    Article  PubMed Central  PubMed  Google Scholar 

  40. Albertsson P, Lennernas B, Norrby K (2003) Chemotherapy and antiangiogenesis: drug-specific effects on microvessel sprouting. APMIS 111:995–1003

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (Nos. 2013R1A2A2A01012250, 2013M2A2A6042317, 2012-0006386, 20090078235) and the Basic Research Laboratory (BRL) Program (2013R1A4A1069507). The Korea Basic Science Institute (Daegu) is acknowledged for the NMR and MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gwang Il An or Jeongsoo Yoo.

Additional information

Wonjung Kwak, Yeong Su Ha and Nisarg Soni have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, W., Ha, Y.S., Soni, N. et al. Apoptosis imaging studies in various animal models using radio-iodinated peptide. Apoptosis 20, 110–121 (2015). https://doi.org/10.1007/s10495-014-1059-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1059-z

Keywords

Navigation