Skip to main content
Log in

Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Our group was the first one reporting that autophagy could be triggered by airborne fine particulate matter (PM) with a mean diameter of less than 2.5 μm (PM2.5) in human lung epithelial A549 cells, which could potentially lead to cell death. In the present study, we further explored the potential interactions between autophagy and apoptosis because it was well documented that PM2.5 could induce apoptosis in A549 cells. Much to our surprise, we found that PM2.5-exposure caused oxidative stress, resulting in activation of multiple cell death pathways in A549 cells, that is, the tumor necrosis factor-alpha (TNF-α)-induced pathway as evidenced by TNF-α secretion and activation of caspase-8 and -3, the intrinsic apoptosis pathway as evidenced by increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic protein Bcl-2, disruption of mitochondrial membrane potential, and activation of caspase-9 and -3, and autophagy as evidenced by an increased number of double-membrane vesicles, accompanied by increases of conversion and punctuation of microtubule-associated proteins light chain 3 (LC3) and expression of Beclin 1. It appears that reactive oxygen species (ROS) function as signaling molecules for all the three pathways because pretreatment with N-acetylcysteine, a scavenger of ROS, almost completely abolished TNF-α secretion and significantly reduced the number of apoptotic and autophagic cells. In another aspect, inhibiting autophagy with 3-methyladenine, a specific autophagy inhibitor, enhanced PM2.5-induced apoptosis and cytotoxicity. Intriguingly, neutralization of TNF-α with an anti-TNF-α special antibody not only abolished activation of caspase-8, but also drastically reduced LC3-II conversion. Thus, the present study has provided novel insights into the mechanism of cytotoxicity and even pathogenesis of diseases associated with PM2.5 exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

CAT:

Catalase

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

ECL:

Enhanced chemiluminescence

LC3:

Microtubule-associated proteins light chain 3

MMP:

Mitochondrial membrane potential

NAC:

N-Acetylcysteine

PM:

Ambient airborne particulate matter

PARP:

Poly-(ADP-ribose)-polymerase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TEM:

Transmission electron microscopy

z-VAD-fmk:

N-Benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone

References

  1. Donaldson K, Seaton A (2012) A short history of the toxicology of inhaled particles. Part Fibre Toxicol 9:13–25

    Article  PubMed Central  PubMed  Google Scholar 

  2. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ulrich MM, Alink GM, Kumarathasan P, Vincent R, Boere AJF et al (2002) Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J Toxicol Environ Health A 65:1571–1595

    Article  CAS  PubMed  Google Scholar 

  4. Müller B, Seifart C, Barth P (1998) Effect of air pollutants on the pulmonary surfactant system. Eur J Clin Invest 28:762–777

    Article  PubMed  Google Scholar 

  5. Duarte FV, Teodoro JS, Rolo AP, Palmeira CM (2011) Exposure to dibenzofuran triggers autophagy in lung cells. Toxicol Lett 209:35–42

    Article  PubMed  Google Scholar 

  6. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  7. Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7:313–319

    Article  CAS  PubMed  Google Scholar 

  8. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Park SH, Kim JH, Chi GY, Kim GY, Chang YC et al (2012) Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol Lett 212:252–261

    Article  CAS  PubMed  Google Scholar 

  10. Soldani C, Scovassi AI (2002) Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321–328

    Article  CAS  PubMed  Google Scholar 

  11. Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F et al (2006) Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology 225:12–24

    Article  CAS  PubMed  Google Scholar 

  12. Huang Q, Zhang J, Peng S, Tian M, Chen J, et al (2013) Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): a proteomic study. J Appl Toxicol. doi: 10.1002/jat.2910

  13. Abounit K, Scarabelli TM, McCauley RB (2012) Autophagy in mammalian cells. World J Biol Chem 3:1–6

    PubMed Central  PubMed  Google Scholar 

  14. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM et al (2009) Tumor necrosis factor-α and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longev 2:297–306

    Article  PubMed Central  PubMed  Google Scholar 

  15. Klionsky D (2013) An overview of autophagy: morphology, mechanism and regulation. Antioxid Redox Signal. doi:10.1089/ars.2013.5371

    PubMed  Google Scholar 

  16. Jin M, Klionsky DJ (2013) The core molecular machinery of autophagosome formation. Autophagy Cancer 8:25–45

    Article  Google Scholar 

  17. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    Article  CAS  PubMed  Google Scholar 

  18. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, Chen D, Ding W (2013) PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro 27(6):1762–1770

    Article  CAS  PubMed  Google Scholar 

  20. Deng XB, Rui W, Zhang F, Ding W (2013) PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29:143–157

    Article  CAS  PubMed  Google Scholar 

  21. Selvaraj VAM, Cohenford M, Murray E (2012) Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. Chemosphere 90:1201–1209

    Article  PubMed  Google Scholar 

  22. Gonda MA, Aaronson SA, Ellmore N, Zeve VH, Nagashima K (1976) Ultrastructural studies of surface features of human normal and tumor cells in tissue culture by scanning and transmission electron microscopy. J Natl Cancer Inst 56:245–263

    CAS  PubMed  Google Scholar 

  23. Upadhyay D, Panduri V, Ghio A, Kamp DW (2003) Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria. Am J Respir Cell Mol Biol 29:180–187

    Article  CAS  PubMed  Google Scholar 

  24. Ding WX (2012) Autophagy in toxicology: defense against xenobiotics. J Drug Metab Toxicol. doi:10.4172/2157-7609.1000e108

    Google Scholar 

  25. Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    Article  CAS  PubMed  Google Scholar 

  26. Moore MN (2008) Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress. Autophagy 4:254–256

    CAS  PubMed  Google Scholar 

  27. Zhang J, Ghio A, Chang W, Kamdar O, Rosen G et al (2007) Bim mediates mitochondria-regulated particulate matter-induced apoptosis in alveolar epithelial cells. FEBS Lett 581:4148–4152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Li N, Kim S, Wang M, Froines J, Sioutas C et al (2002) Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal Toxicol 14:459–486

    Article  CAS  PubMed  Google Scholar 

  29. Senft AP, Dalton TP, Nebert DW, Genter MB, Puga A et al (2002) Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor. Free Radic Bio Med 33:1268–1278

    Article  CAS  Google Scholar 

  30. Jung D (2009) Mitochondria as a target of benzo[a]pyrene toxicity in a PAH-adapted and Naïve. Duke University

  31. Le Bras M, Clement M, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219

    PubMed  Google Scholar 

  32. Van Limbergen J, Stevens C, Nimmo E, Wilson D, Satsangi J (2009) Autophagy: from basic science to clinical application. Mucosal Immunol 2:315–330

    Article  PubMed  Google Scholar 

  33. Xu Y, Ruan S, Wu X, Chen H, Zheng K et al (2013) Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int J Mol Med 31:628–636

    CAS  PubMed  Google Scholar 

  34. Eisenberg-Lerner A, Bialik S, Simon H, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Xing D, Zhou F, Chen Q (2010) Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3 activation. Biochem Biophys Res Commun 395:190–195

    Article  CAS  PubMed  Google Scholar 

  36. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  37. Xu Y, Yu H, Qin H, Kang J, Yu C et al (2012) Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett 314:232–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from Gong-Yi Program of China Ministry of Environmental Protection (No. 200909016), National Natural Science Foundation of China (No. 11275264, 21377127), the National Science and Technology Ministry of China (No. 2007BAC27B02-2), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Conflict of interest

All authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhao or Wenjun Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Zhang, F., Wang, L. et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis 19, 1099–1112 (2014). https://doi.org/10.1007/s10495-014-0980-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0980-5

Keywords

Navigation