Skip to main content

Advertisement

Log in

Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells

Apoptosis Aims and scope Submit manuscript

Abstract

The Notch signaling pathway plays a significant role in differentiation, proliferation, apoptosis, and stem cell processes. It is essential for maintenance of the normal colon crypt and has been implicated in colorectal cancer oncogenesis. Downregulation of the Notch pathway through gamma-secretase inhibitors (GSIs) has been shown to induce apoptosis and enhance response to chemotherapy in a variety of malignancies. In this study, we analyzed the effect of MRK-003 (Merck), a potent inhibitor of gamma-secretase, on oxaliplatin-induced apoptosis in colon cancer. Unexpectedly, gamma-secretase inhibition reduced oxaliplatin-induced apoptosis while GSI treatment alone was shown to have no effect on growth or apoptosis. We determined that the underlying mechanism of action involved an increase in protein levels of the anti-apoptotic Bcl-2 family members Mcl-1 and/or Bcl-xL which resulted in reduced Bax and Bak activation. Blocking of Mcl-1 and/or Bcl-xL through siRNA or the small molecule inhibitor obatoclax restored the apoptotic potential of cells treated with both oxaliplatin and MRK-003. Moreover, obatoclax synergized with MRK-003 alone to induce apoptosis. Our findings warrant caution when treating colon cancer with the combination of GSIs and chemotherapy, whereas other drug combinations, such as GSIs plus obatoclax, should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. Cancer J Clin 62 (1):10–29. doi:10.3322/caac.20138

  2. Saltz LB (2009) Looking ahead: what will change in colorectal cancer treatment? Gastrointest Cancer Res 3(2 Suppl):S16–S18

    PubMed  Google Scholar 

  3. Garcia-Foncillas J, Diaz-Rubio E (2010) Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol 12(8):533–542

    Article  CAS  PubMed  Google Scholar 

  4. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393(6683):382–386. doi:10.1038/30756

    Article  CAS  PubMed  Google Scholar 

  5. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A (1995) Signalling downstream of activated mammalian Notch. Nature 377(6547):355–358. doi:10.1038/377355a0

    Article  CAS  PubMed  Google Scholar 

  6. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646. doi:10.1007/s00018-009-8668-7

    Article  CAS  PubMed  Google Scholar 

  7. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537. doi:10.1158/0008-5472.CAN-05-1069

    Article  CAS  PubMed  Google Scholar 

  8. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525. doi:10.1158/0008-5472.CAN-05-3054

    Article  CAS  PubMed  Google Scholar 

  9. Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB (2008) Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118(11):3660–3670. doi:10.1172/JCI36157

    Article  CAS  PubMed  Google Scholar 

  10. Wang M, Wang J, Wang L, Wu L, Xin X (2010) Notch1 expression correlates with tumor differentiation status in ovarian carcinoma. Med Oncol 27(4):1329–1335. doi:10.1007/s12032-009-9384-8

    Article  CAS  PubMed  Google Scholar 

  11. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, Kim R, Tang J, Montie JE, Chinnaiyan AM, Rubin MA, Aster JC (2004) JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 64(19):6854–6857. doi:10.1158/0008-5472.can-04-2500

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, Hay N, Sarkar FH (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109(4):726–736. doi:10.1002/jcb.22451

    CAS  PubMed  Google Scholar 

  13. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661

    Article  CAS  PubMed  Google Scholar 

  14. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271. doi:10.1126/science.1102160

    Article  CAS  PubMed  Google Scholar 

  15. Talora C, Sgroi DC, Crum CP, Dotto GP (2002) Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 16(17):2252–2263. doi:10.1101/gad.988902

    Article  CAS  PubMed  Google Scholar 

  16. Kunnimalaiyaan M, Chen H (2007) Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 12(5):535–542. doi:10.1634/theoncologist.12-5-535

    Article  CAS  PubMed  Google Scholar 

  17. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW (2001) Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61(7):3200–3205

    CAS  PubMed  Google Scholar 

  18. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H, Guo Z, Cheng T, Cao X (2003) Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 63(23):8323–8329

    CAS  PubMed  Google Scholar 

  19. Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 21(5):562–577. doi:10.1101/gad.1484707

    Article  CAS  PubMed  Google Scholar 

  20. McKee S (2010) Lilly hit by spectacular failure of phase III Alzheimer’s candidate. PharmaTimes. http://www.pharmatimes.com/Article/10-08-18/Lilly_hit_by_spectacular_failure_of_Phase_III_Alzheimer_s_candidate.aspx-.UA2YKRZFENo.link. Accessed May 2012

  21. Li T, Wen H, Brayton C, Laird FM, Ma G, Peng S, Placanica L, Wu TC, Crain BJ, Price DL, Eberhart CG, Wong PC (2007) Moderate reduction of gamma-secretase attenuates amyloid burden and limits mechanism-based liabilities. J Neurosci 27(40):10849–10859. doi:10.1523/jneurosci.2152-07.2007

    Article  CAS  PubMed  Google Scholar 

  22. Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107(6):2223–2233. doi:10.1182/blood-2005-08-3329

    Article  CAS  PubMed  Google Scholar 

  23. Ramakrishnan V, Ansell S, Haug J, Grote D, Kimlinger T, Stenson M, Timm M, Wellik L, Halling T, Rajkumar SV, Kumar S (2012) MRK003, a [gamma]-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin’s lymphoma. Leukemia 26(2):340–348

    Article  CAS  PubMed  Google Scholar 

  24. Lewis HD, Leveridge M, Strack PR, Haldon CD, O’Neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, Draetta G, Harrison T, Kerby JA, Shearman MS, Beher D (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14(2):209–219. doi:10.1016/j.chembiol.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  25. Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, Golde TE, Miele L, Foreman KE (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30(10):3853–3867

    CAS  PubMed  Google Scholar 

  26. Plentz R, Park JS, Rhim AD, Abravanel D, Hezel AF, Sharma SV, Gurumurthy S, Deshpande V, Kenific C, Settleman J, Majumder PK, Stanger BZ, Bardeesy N (2009) Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136 (5):1741–1749.e1746

    Google Scholar 

  27. Vo K, Amarasinghe B, Washington K, Gonzalez A, Berlin J, Dang TP (2011) Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Mol Cancer 10:138. doi:10.1186/1476-4598-10-138

    Article  CAS  PubMed  Google Scholar 

  28. Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP, Dang TP (2007) Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 67(17):8051–8057. doi:10.1158/0008-5472.can-07-1022

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD (2010) Inhibition of Notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1(8):822–835. doi:10.1177/1947601910383564

    Article  CAS  PubMed  Google Scholar 

  30. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F (2008) Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9(4):377–383. doi:10.1038/embor.2008.7

    Article  CAS  PubMed  Google Scholar 

  31. Sander GR, Powell BC (2004) Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52(4):509–516

    Article  CAS  PubMed  Google Scholar 

  32. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S (2005) Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044):964–968. doi:10.1038/nature03589

    Article  CAS  PubMed  Google Scholar 

  33. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963. doi:10.1038/nature03659

    Article  PubMed  Google Scholar 

  34. Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307(5717):1904–1909. doi:10.1126/science.1104815

    Article  CAS  PubMed  Google Scholar 

  35. Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S, Egan SE (2008) Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 33(6):1223–1229

    PubMed  Google Scholar 

  36. Meng RD, Shelton CC, Li Y-M, Qin L-X, Notterman D, Paty PB, Schwartz GK (2009) γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 69(2):573–582. doi:10.1158/0008-5472.can-08-2088

    Article  CAS  PubMed  Google Scholar 

  37. Aleksic T, Feller S (2008) Gamma-secretase inhibition combined with platinum compounds enhances cell death in a large subset of colorectal cancer cells. Cell Commun Signal 6(1):8

    Article  PubMed  Google Scholar 

  38. Akiyoshi T, Nakamura M, Yanai K, Nagai S, Wada J, Koga K, Nakashima H, Sato N, Tanaka M, Katano M (2008) Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 134(1):131–144. doi:10.1053/j.gastro.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  39. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632

    Article  CAS  PubMed  Google Scholar 

  40. Hsu Y-T, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273(17):10777–10783. doi:10.1074/jbc.273.17.10777

    Article  CAS  PubMed  Google Scholar 

  41. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441. doi:10.1242/jcs.031682

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28. doi:10.1002/stem.261

    CAS  PubMed  Google Scholar 

  43. Zhao N, Guo Y, Zhang M, Lin L, Zheng Z (2010) Akt-mTOR signaling is involved in Notch-1-mediated glioma cell survival and proliferation. Oncol Rep 23(5):1443–1447

    CAS  PubMed  Google Scholar 

  44. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111(4):2220–2229. doi:10.1182/blood-2007-07-102632

    Article  CAS  PubMed  Google Scholar 

  45. Seveno C, Loussouarn D, Brechet S, Campone M, Juin P, Barille-Nion S (2012) Gamma-secretase inhibition promotes cell death, Noxa upregulation, and sensitization to BH3 mimetic ABT-737 in human breast cancer cells. Breast Cancer Res 14(3):R96. doi:10.1186/bcr3214

    Article  CAS  PubMed  Google Scholar 

  46. Liu S, Breit S, Danckwardt S, Muckenthaler MU, Kulozik AE (2009) Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 88(7):613–621. doi:10.1007/s00277-008-0646-x

    Article  CAS  PubMed  Google Scholar 

  47. Haapasalo A, Kovacs DM (2011) The many substrates of presenilin/γ-secretase. J Alzheimers Dis 25(1):3–28. doi:10.3233/jad-2011-101065

    CAS  PubMed  Google Scholar 

  48. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI, Nefedova Y (2010) Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 9(12):3200–3209. doi:10.1158/1535-7163.mct-10-0372

    Article  CAS  PubMed  Google Scholar 

  50. Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H, Sullivan D (2012) A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer 48(7):997–1003. doi:10.1016/j.ejca.2012.02.056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Flow Cytometry Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, a comprehensive cancer center designated by the National Cancer Institute. This work was supported by Bankhead-Coley Biomedical Research Program, Florida Department of Health, Grant number 08BR-02 and by institutional funds from the Moffitt Cancer Center (to T.J.Y.).

Conflict of interest

No potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Yeatman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2013_883_MOESM1_ESM.pptx

Effects of Alternative GSIs on HCT-116 and SW480 Colon Cancer Cell Lines. HCT-116 and SW480 cells were treated with 15 μM (HCT-116) or 30 μM (SW480) oxaliplatin (Oxa) for 48 h in the absence or presence of 25 μM DAPT (A), 5 μM (HCT-116) or 10 μM (SW480) GSI-XII (B), or 2 μM GSI-XX (C). Apoptosis rates were measured by flow cytometry following active caspase-3 reactivity. Represented data are mean ± SEM of two independent experiments. Supplementary material 1 (PPTX 58 kb)

10495_2013_883_MOESM2_ESM.pptx

Effects of MRK-003 on Oxaliplatin-Induced Apoptosis in HT-29, HCT-15, and Colo205 Colon Cancer Cell Lines. HT-29, HCT-15, and Colo205 were treated with either 30 (HCT-15) or 50 μM (HT-29 and Colo205) Oxa in the absence or presence of 5 μM (HT-29) or 10 μM MRK-003 (HCT-15 and Colo205) for 48 h. Apoptosis rates were measured by flow cytometry following active caspase-3 reactivity. Represented data are mean ± SEM of at least two independent experiments. Supplementary material 2 (PPTX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timme, C.R., Gruidl, M. & Yeatman, T.J. Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells. Apoptosis 18, 1163–1174 (2013). https://doi.org/10.1007/s10495-013-0883-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0883-x

Keywords

Navigation