Skip to main content

Advertisement

Log in

hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Fas is a transmembrane cell surface protein recognized by Fas ligand (FasL). When FasL binds to Fas, the target cells undergo apoptosis. A soluble Fas molecule that lacks the transmembrane domain is produced from skipping of exon 6 encoding this region in alternative splicing procedure. The soluble Fas molecule has the opposite function of intact Fas molecule, protecting cells from apoptosis. Here we show that knockdown of hnRNP A1 promotes exon 6 skipping of Fas pre-mRNA, whereas overexpression of hnRNP A1 reduces exon 6 skipping. Based on the bioinformatics approach, we have hypothesized that hnRNP A1 functions through interrupting 5′ splice site selection of exon 5 by interacting with its potential binding site close to 5′ splice site of exon 5. Consistent with our hypothesis, we demonstrate that mutations of the hnRNP A1 binding site on exon 5 disrupted the effects of hnRNP A1 on exon 6 inclusion. RNA pull-down assay and then western blot analysis with hnRNP A1 antibody prove that hnRNP A1 contacts the potential binding site RNA sequence on exon 5 but not the mutant sequence. In addition, we show that the mutation of 5′ splice site on exon 5 to a less conserved sequence destructed the effects of hnRNP A1 on exon 6 inclusion. Therefore we conclude that hnRNP A1 interacts with exon 5 to promote distal exon 6 inclusion of Fas pre-mRNA. Our study reveals a novel alternative splicing mechanism of Fas pre-mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M et al (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243

    Article  PubMed  CAS  Google Scholar 

  2. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W et al (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245(4915):301–305

    Article  PubMed  CAS  Google Scholar 

  3. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C et al (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 267(15):10709–10715

    PubMed  CAS  Google Scholar 

  4. Lee SH, Kim SY, Lee JY, Shin MS, Dong SM, Na EY et al (1998) Detection of soluble Fas mRNA using in situ reverse transcription-polymerase chain reaction. Lab Invest 78(4):453–459

    PubMed  CAS  Google Scholar 

  5. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: Design principles of a dynamic RNP machine. Cell 136(4):701–718. doi:10.1016/j.cell.2009.02.009

    Article  PubMed  CAS  Google Scholar 

  6. Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103(3):367–370

    Article  PubMed  CAS  Google Scholar 

  7. Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17(2):100–107

    Article  PubMed  CAS  Google Scholar 

  8. Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29(13):2850–2859

    Article  PubMed  CAS  Google Scholar 

  9. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336. doi:10.1146/annurev.biochem.72.121801.161720

    Article  PubMed  CAS  Google Scholar 

  10. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6(5):386–398. doi:10.1038/nrm1645

    Article  PubMed  CAS  Google Scholar 

  11. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12(1):5–14

    Article  PubMed  CAS  Google Scholar 

  12. Reed R (1996) Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev 6(2):215–220

    Article  PubMed  CAS  Google Scholar 

  13. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289–321. doi:10.1146/annurev.bi.62.070193.001445

    Article  PubMed  CAS  Google Scholar 

  14. Hertel KJ (2008) Combinatorial control of exon recognition. J Biol Chem 283(3):1211–1215. doi:10.1074/jbc.R700035200

    Article  PubMed  CAS  Google Scholar 

  15. Senapathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    Article  PubMed  CAS  Google Scholar 

  16. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18(11):1241–1250. doi:10.1101/gad.1195304

    Article  PubMed  CAS  Google Scholar 

  17. Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6(9):1197–1211

    Article  PubMed  CAS  Google Scholar 

  18. Manley JL, Krainer AR (2010) A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev 24(11):1073–1074. doi:10.1101/gad.1934910

    Article  PubMed  CAS  Google Scholar 

  19. Blencowe BJ, Bowman JA, McCracken S, Rosonina E (1999) SR-related proteins and the processing of messenger RNA precursors. Biochem Cell Biol 77(4):277–291

    Article  PubMed  CAS  Google Scholar 

  20. Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417(1):15–27. doi:10.1042/BJ20081501

    Article  PubMed  CAS  Google Scholar 

  21. Fu XD (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1(7):663–680

    PubMed  CAS  Google Scholar 

  22. Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8(6):1351–1361

    Article  PubMed  CAS  Google Scholar 

  23. Tange TO, Damgaard CK, Guth S, Valcarcel J, Kjems J (2001) The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J 20(20):5748–5758. doi:10.1093/emboj/20.20.5748

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Contreras R, Fisette JF, Nasim FU, Madden R, Cordeau M, Chabot B (2006) Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 4(2):e21. doi:10.1371/journal.pbio.0040021

    Article  PubMed  Google Scholar 

  25. Busch A, Hertel KJ (2012) Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip Rev RNA 3(1):1–12. doi:10.1002/wrna.100

    Article  PubMed  CAS  Google Scholar 

  26. Hoffman DW, Query CC, Golden BL, White SW, Keene JD (1991) RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci USA 88(6):2495–2499

    Article  PubMed  CAS  Google Scholar 

  27. Beyer AL, Christensen ME, Walker BW, LeStourgeon WM (1977) Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell 11(1):127–138

    Article  PubMed  CAS  Google Scholar 

  28. Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430(3):379–392. doi:10.1042/BJ20100396

    Article  PubMed  CAS  Google Scholar 

  29. Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68(2):365–375

    Article  PubMed  CAS  Google Scholar 

  30. Mayeda A, Munroe SH, Caceres JF, Krainer AR (1994) Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J 13(22):5483–5495

    PubMed  CAS  Google Scholar 

  31. Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B (2007) hnRNP proteins and splicing control. Adv Exp Med Biol 623:123–147

    Article  PubMed  Google Scholar 

  32. Cho S, Moon H, Yang X, Zhou J, Kim HR, Shin MG et al (2012) Validation of trans-acting elements that promote exon 7 skipping of SMN2 in SMN2-GFP stable cell line. Biochem Biophys Res Commun 423(3):531–535. doi:10.1016/j.bbrc.2012.05.161

    Article  PubMed  CAS  Google Scholar 

  33. Goina E, Skoko N, Pagani F (2008) Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant. Mol Cell Biol 28(11):3850–3860. doi:10.1128/MCB.02253-07

    Article  PubMed  CAS  Google Scholar 

  34. Tavanez JP, Madl T, Kooshapur H, Sattler M, Valcarcel J (2012) hnRNP A1 proofreads 3’ splice site recognition by U2AF. Mol Cell 45(3):314–329. doi:10.1016/j.molcel.2011.11.033

    Article  PubMed  CAS  Google Scholar 

  35. Bonnal S, Martinez C, Forch P, Bachi A, Wilm M, Valcarcel J (2008) RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 32(1):81–95. doi:10.1016/j.molcel.2008.08.008

    Article  PubMed  CAS  Google Scholar 

  36. Izquierdo JM, Majos N, Bonnal S, Martinez C, Castelo R, Guigo R et al (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19(4):475–484. doi:10.1016/j.molcel.2005.06.015

    Article  PubMed  CAS  Google Scholar 

  37. Izquierdo JM (2010) Cell-specific regulation of Fas exon 6 splicing mediated by Hu antigen R. Biochem Biophys Res Commun 402(2):324–328. doi:10.1016/j.bbrc.2010.10.025

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Juan Valcarcel for providing the mutant fas minigene plasmids (e1, E23, 6-6, 5-5). This work was supported by Mid-career Researcher Program through a National Research Foundation (NRF) grant (2011-0000188 and 20120005340) funded by the Ministry of Education, Science, and Technology (MEST), Korea; and a Systems Biology Infrastructure Establishment grant provided by Gwangju Institute of Science and Technology (GIST) in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihong Shen.

Additional information

Hyunkyung Oh and Eunkyung Lee have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, H.k., Lee, E., Jang, H.N. et al. hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene. Apoptosis 18, 825–835 (2013). https://doi.org/10.1007/s10495-013-0824-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0824-8

Keywords

Navigation