Skip to main content
Log in

Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CHOP:

CCAAT/enhancer-binding protein-homologous protein

ER:

Endoplasmic reticulum

ERS:

Endoplasmic reticulum stress

GRP78:

Glucose regulating protein 78

HPC:

Hypoxic preconditioning

H/R:

Hypoxia/reoxygenation

IPC:

Ischemic preconditioning

I/R:

Ischemia/reperfusion

LDH:

Lactate dehydrogenase

MVECs:

Microvascular endothelial cells

p38 MAPK:

p38 mitogen-activated protein kinase

PDIA3:

Protein disulfide isomerase associated 3

PERK:

Protein kinase R-like ER kinase

TG:

Thapsigargin

2-DE:

Two-dimensional gel electrophoresis

References

  1. Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    Article  PubMed  CAS  Google Scholar 

  2. Liu XH, Wang S, Wu XD, Tang CS (2000) Association between delayed cardioprotection of aged rat myocytes is associated and activation of mitogen-activated protein kinase. Chin Med J 113:5–9

    PubMed  CAS  Google Scholar 

  3. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  4. Liu XH, Zhang ZY, Sun S, Wu XD (2008) Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress. Shock 30:422–427

    Article  PubMed  CAS  Google Scholar 

  5. Lehotský J, Urban P, Pavlíková M, Tatarková Z, Kaminska B, Kaplán P (2009) Molecular mechanisms leading to neuroprotection/ischemic tolerance: effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol 29:917–925

    Article  PubMed  Google Scholar 

  6. Nakamura K, Bossy-Wetzel E, Burns K, Lozyk M, Goping IS, Opas M, Bleackley RC, Green DR, Michalak M (2000) Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731–740

    Article  PubMed  CAS  Google Scholar 

  7. Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, Gibson BW, Ellerby HM, Bredesen DE (2004) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 279:177–187

    Article  PubMed  CAS  Google Scholar 

  8. Xu C, Bailly-Maitre B, Reed J (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  PubMed  CAS  Google Scholar 

  9. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    PubMed  CAS  Google Scholar 

  10. Kumar S, Reusch HP, Ladilov Y (2008) Acidic pre-conditioning suppresses apoptosis and increases expression of Bcl-xL in coronary endothelial cells under simulated ischaemia. J Cell Mol Med 12:1584–1592

    Article  PubMed  CAS  Google Scholar 

  11. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Baruch-Oren T, Berliner JA, Kirchgessner TG, Lusis AJ (2006) The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 26:2490–2496

    Article  PubMed  CAS  Google Scholar 

  12. Li Z, Zhang T, Dai H, Liu G, Wang H, Sun Y, Zhang Y, Ge Z (2008) Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats. J Endocrinol 196:565–572

    Article  PubMed  CAS  Google Scholar 

  13. Wu X, Liu X, Zhu X, Tang C (2007) Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation. Shock 27:572–577

    Article  PubMed  CAS  Google Scholar 

  14. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  15. Zhao TC, Hines DS, Kukreja RC (2001) Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels. Am J Physiol Heart Circ Physiol 280:H1278–H1285

    PubMed  CAS  Google Scholar 

  16. Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL (1999) Bcl-2 and Bcl-XL block thapsigargin-induced nitric oxide generation, c-Jun NH2-terminal kinase activity, and apoptosis. Mol Cell Biol 19:5659–5674

    PubMed  CAS  Google Scholar 

  17. Liu XH, Wu XD, Cai LR, Sun S (2008) Calreticulin downregulation is associated with FGF-2-induced angiogenesis through calcineurin pathway in ischemic myocardium. Shock 29:140–148

    Article  PubMed  CAS  Google Scholar 

  18. Gillrie MR, Krishnegowda G, Lee K, Buret AG, Robbins SM, Looareesuwan S, Gowda DC, Ho M (2007) Src-family kinase_dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood 110:3426–3435

    Article  PubMed  CAS  Google Scholar 

  19. Zhang ZY, Liu XH, Hu WC, Rong F, Wu XD (2010) Calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1499–H1509

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez JC, Rouge V, Pisteur M (1997) Improved and simplified in gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18:324–327

    Article  PubMed  CAS  Google Scholar 

  22. Wang HC, Zhang HF, Guo WY, Su H, Zhang KR, Li QX, Yan W, Ma XL, Lopez BL, Christopher TA, Gao F (2006) Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis 11:1453–1460

    Article  PubMed  CAS  Google Scholar 

  23. Papp Z, van der Velden J, Stienen GJM (2000) Calpain-induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of the rat. Cardiovasc Res 45:981–993

    Google Scholar 

  24. Natarajan R, Salloum FN, Fisher BJ, Smithson L, Almenara J, Fowler AA 3rd (2009) Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes. Vascul Pharmacol 51:110–118

    Article  PubMed  CAS  Google Scholar 

  25. Azfer A, Niu JL, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291:H1411–H1420

    Article  PubMed  CAS  Google Scholar 

  26. Schröder M, Kaufman RJ (2006) Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med 6:5–36

    Article  PubMed  Google Scholar 

  27. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  28. Kim KM, Pae HO, Zheng M, Park R, Kim YM, Chung HT (2007) Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress. Circ Res 101:919–927

    Article  PubMed  CAS  Google Scholar 

  29. Friedman AD (1996) GADD153/CHOP, a DNA damage-inducible protein, reduced CAAT/enhancer binding protein activities and increased apoptosis in 32D c13 myeloid cells. Cancer Res 56:3250–3256

    PubMed  CAS  Google Scholar 

  30. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21:1249–1259

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  PubMed  CAS  Google Scholar 

  32. Mandlekar S, Kong AN (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477

    Article  PubMed  CAS  Google Scholar 

  33. Ping P, Murphy E (2000) Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase? Circ Res 86:921–922

    Article  PubMed  CAS  Google Scholar 

  34. Hung CC, Ichimura T, Stevens JL, Bonventre JV (2003) Protection of renal epithelial cells against oxidativeinjury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J Biol Chem 278:29317–29326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81070186) and a grant from the National Basic Research Program of China (No. 2011CB944004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Dong Wu or Xiu-Hua Liu.

Additional information

Xu-Dong Wu and Zhen-Ying Zhang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XD., Zhang, ZY., Sun, S. et al. Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress. Apoptosis 18, 85–98 (2013). https://doi.org/10.1007/s10495-012-0766-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0766-6

Keywords

Navigation