Skip to main content
Log in

Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor hypoxia is considered the best validated target in clinical oncology because of its significant contribution to chemotherapy failure and drug resistance. As an approach to target hypoxia, we assessed the potential of quercetin, a flavonoid widely distributed in plants, as a anticancer agent under hypoxic conditions and examined its pharmacological mechanisms by primarily focusing on the role of AMP-activated protein kinase (AMPK). Quercetin significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model with a substantial reduction of AMPK activity. In a cell culture system, quercetin more dramatically induced apoptosis of HCT116 cancer cells under hypoxic conditions than normoxic conditions, and this was tightly associated with inhibition of hypoxia-induced AMPK activity. An in vitro kinase assay demonstrated that quercetin directly inhibits AMPK activity. Inhibition of AMPK by expressing a dominant-negative form resulted in an increase of apoptosis under hypoxia, and a constitutively active form of AMPK effectively blocked quercetin-induced apoptosis under hypoxia. Collectively, our data suggest that quercetin directly inhibits hypoxia-induced AMPK, which plays a protective role against hypoxia. Quercetin also reduced the activity of hypoxia-inducible factor-1 (HIF-1), a major transcription factor for adaptive cellular response to hypoxia. Moreover, quercetin sensitized HCT116 cancer cells to the anticancer drugs cisplatin and etoposide under hypoxic conditions. Our findings suggest that AMPK may serve as a novel target for overcoming tumor hypoxia-associated negative aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shekhar MP (2011) Drug resistance: challenges to effective therapy. Curr Cancer Drug Targets 11(5):613–623

    PubMed  CAS  Google Scholar 

  2. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  PubMed  CAS  Google Scholar 

  4. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med (Berlin, Germany) 85(12):1301–1307

    Article  Google Scholar 

  5. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410

    Article  PubMed  CAS  Google Scholar 

  6. Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N, Burman AC (2009) Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anti-Cancer Agents Med Chem 9(2):138–161

    CAS  Google Scholar 

  7. Tan WF, Lin LP, Li MH, Zhang YX, Tong YG, Xiao D, Ding J (2003) Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol 459(2–3):255–262

    Article  PubMed  CAS  Google Scholar 

  8. Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB (2010) Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 76(11):1044–1063

    Article  PubMed  CAS  Google Scholar 

  9. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2):315–325

    Article  PubMed  CAS  Google Scholar 

  10. Kawahara T, Kawaguchi-Ihara N, Okuhashi Y, Itoh M, Nara N, Tohda S (2009) Cyclopamine and quercetin suppress the growth of leukemia and lymphoma cells. Anticancer Res 29(11):4629–4632

    PubMed  CAS  Google Scholar 

  11. Luo H, Jiang BH, King SM, Chen YC (2008) Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer 60(6):800–809

    Article  PubMed  CAS  Google Scholar 

  12. Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kappaB inhibition. Eur J Pharmacol 649(1–3):84–91

    Article  PubMed  CAS  Google Scholar 

  13. Suolinna EM, Buchsbaum RN, Racker E (1975) The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res 35(7):1865–1872

    PubMed  CAS  Google Scholar 

  14. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  PubMed  Google Scholar 

  15. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919

    Article  PubMed  CAS  Google Scholar 

  16. Triantafyllou A, Mylonis I, Simos G, Bonanou S, Tsakalof A (2008) Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic Biol Med 44(4):657–670

    Article  PubMed  CAS  Google Scholar 

  17. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  18. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31(Pt 1):162–168

    PubMed  CAS  Google Scholar 

  19. Hardie DG (2008) Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 582(1):81–89

    Article  PubMed  CAS  Google Scholar 

  20. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2(1):9–19

    Article  PubMed  CAS  Google Scholar 

  21. Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100(15):8839–8843

    Article  PubMed  CAS  Google Scholar 

  22. Yun H, Lee M, Kim SS, Ha J (2005) Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem 280(11):9963–9972

    Article  PubMed  CAS  Google Scholar 

  23. Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG, Kim SS, Ha J (2003) AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem 278(41):39653–39661

    Article  PubMed  CAS  Google Scholar 

  24. Hwang JT, Kim YM, Surh YJ, Baik HW, Lee SK, Ha J, Park OJ (2006) Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells. Cancer Res 66(20):10057–10063

    Article  PubMed  CAS  Google Scholar 

  25. Ha J, Daniel S, Broyles SS, Kim KH (1994) Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem 269(35):22162–22168

    PubMed  CAS  Google Scholar 

  26. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol 15:551–578

    Article  CAS  Google Scholar 

  27. Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Faseb J 16(10):1151–1162

    Article  PubMed  CAS  Google Scholar 

  28. Kim HS, Hwang JT, Yun H, Chi SG, Lee SJ, Kang I, Yoon KS, Choe WJ, Kim SS, Ha J (2008) Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Boil Chem 283(7):3731–3742

    Article  CAS  Google Scholar 

  29. Lee YK, Park OJ (2010) Regulation of mutual inhibitory activities between AMPK and Akt with quercetin in MCF-7 breast cancer cells. Oncol Rep 24(6):1493–1497

    PubMed  CAS  Google Scholar 

  30. Kim HJ, Kim SK, Kim BS, Lee SH, Park YS, Park BK, Kim SJ, Kim J, Choi C, Kim JS, Cho SD, Jung JW, Roh KH, Kang KS, Jung JY (2010) Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agric Food Chem 58(15):8643–8650

    Article  PubMed  CAS  Google Scholar 

  31. Lee YK, Park SY, Kim YM, Lee WS, Park OJ (2009) AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med 41(3):201–207

    Article  PubMed  CAS  Google Scholar 

  32. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, Foretz M, Viollet B (2006) 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 26(14):5336–5347

    Article  PubMed  CAS  Google Scholar 

  33. Kim MJ, Park IJ, Yun H, Kang I, Choe W, Kim SS, Ha J (2010) AMP-activated protein kinase antagonizes pro-apoptotic extracellular signal-regulated kinase activation by inducing dual-specificity protein phosphatases in response to glucose deprivation in HCT116 carcinoma. J Biol Chem 285(19):14617–14627

    Article  PubMed  CAS  Google Scholar 

  34. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, Zheng ZH, Liu CM, Wang YJ (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222(2):199–212

    Article  PubMed  CAS  Google Scholar 

  35. Xu Q, Si LY (2010) Protective effects of AMP-activated protein kinase in the cardiovascular system. J Cell Mol Med 14(11):2604–2613

    Article  PubMed  CAS  Google Scholar 

  36. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293

    Article  PubMed  CAS  Google Scholar 

  37. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  PubMed  CAS  Google Scholar 

  38. Wang W, Guan KL (2009) AMP-activated protein kinase and cancer. Acta Physiol (Oxford, England) 196(1):55–63

    Article  CAS  Google Scholar 

  39. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29(4):713–721

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Kyung Hee University in 2010 (KHU-20100849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohun Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Wannatung, T., Lee, S. et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 17, 938–949 (2012). https://doi.org/10.1007/s10495-012-0719-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0719-0

Keywords

Navigation