Skip to main content

Advertisement

Log in

Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor suppressor genes BRCA1 and BRCA2 function in a complex gene network that regulates homologous recombination and DNA double-strand break repair. Disruption of the BRCA-network through gene mutation, deletion, or RNAi-mediated silencing can sensitize cells to small molecule inhibitors of poly (ADP-ribose) polymerase (PARPi). Here, we demonstrate that BRCA-network disruption in the presence of PARPi leads to the selective induction and enhancement of interferon pathway and apoptotic gene expression in cultured tumor cells. In addition, we report PARPi cytotoxicity in BRCA1-deficient tumor cells is enhanced >10-fold when combined with interferon-γ. These findings establish a link between synthetic lethality of PARPi in BRCA-network disrupted cells and interferon pathway activation triggered by genetic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  PubMed  CAS  Google Scholar 

  2. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  PubMed  CAS  Google Scholar 

  3. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66(16):8109–8115

    Article  PubMed  CAS  Google Scholar 

  4. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19(17):1951–1967

    Article  PubMed  CAS  Google Scholar 

  5. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528

    Article  PubMed  CAS  Google Scholar 

  6. O’Donovan PJ, Livingston DM (2010) BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31(6):961–967

    Article  PubMed  Google Scholar 

  7. Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A (1999) Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol 19(7):4633–4642

    PubMed  CAS  Google Scholar 

  8. Gudmundsdottir K, Lord CJ, Witt E, Tutt AN, Ashworth A (2004) DSS1 is required for RAD51 focus formation and genomic stability in mammalian cells. EMBO Rep 5(10):989–993

    Article  PubMed  CAS  Google Scholar 

  9. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307(5):1235–1245

    Article  PubMed  CAS  Google Scholar 

  10. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA 108(8):3406–3411

    Article  PubMed  CAS  Google Scholar 

  11. Yap TA, Sandhu SK, Carden CP, de Bono JS (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61(1):31–49

    Article  PubMed  Google Scholar 

  12. Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3(10):531–539

    Article  PubMed  CAS  Google Scholar 

  13. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  PubMed  CAS  Google Scholar 

  14. Rastelli F, Biancanelli S, Falzetta A, Martignetti A, Casi C, Bascioni R et al (2010) Triple-negative breast cancer: current state of the art. Tumori 96(6):875–888

    PubMed  Google Scholar 

  15. O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214

    Article  PubMed  Google Scholar 

  16. Guha M (2011) Parp inhibitors stumble in breast cancer. Nat Biotechnol 29(5):373–374

    Article  PubMed  CAS  Google Scholar 

  17. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8961

    Article  PubMed  CAS  Google Scholar 

  18. Pescatore G, Branca D, Fiore F, Kinzel O, Bufi LL, Muraglia E et al (2010) Identification and SAR of novel pyrrolo[1,2-a]pyrazin-1(2H)-one derivatives as inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg Med Chem Lett 20(3):1094–1099

    Article  PubMed  CAS  Google Scholar 

  19. Smith LM, Willmore E, Austin CA, Curtin NJ (2005) The novel poly(ADP-Ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks. Clin Cancer Res 11(23):8449–8457

    Article  PubMed  CAS  Google Scholar 

  20. Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A et al (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26(24):9377–9386

    Article  PubMed  CAS  Google Scholar 

  21. Carleton M, Mao M, Biery M, Warrener P, Kim S, Buser C et al (2006) RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol Cell Biol 26(10):3853–3863

    Article  PubMed  CAS  Google Scholar 

  22. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347

    Article  PubMed  CAS  Google Scholar 

  23. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  24. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694

    Article  PubMed  CAS  Google Scholar 

  25. Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE (2006) Rosetta error model for gene expression analysis. Bioinformatics 22(9):1111–1121

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka N, Taniguchi T (2000) The interferon regulatory factors and oncogenesis. Semin Cancer Biol 10(2):73–81

    Article  PubMed  CAS  Google Scholar 

  27. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL (2002) Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 21(51):7776–7785

    Article  PubMed  CAS  Google Scholar 

  28. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A et al (2005) Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 26(9):1527–1535

    Article  PubMed  CAS  Google Scholar 

  29. Hu G, Barnes BJ (2006) Interferon regulatory factor-5-regulated pathways as a target for colorectal cancer therapeutics. Expert Rev Anticancer Ther 6(5):775–784

    Article  PubMed  CAS  Google Scholar 

  30. Hu G, Mancl ME, Barnes BJ (2005) Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. Cancer Res 65(16):7403–7412

    Article  PubMed  CAS  Google Scholar 

  31. Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S et al (1995) An IRF-1-dependent pathway of DNA damage-induced apoptosis in mitogen-activated T lymphocytes. Nature 376(6541):596–599

    Article  PubMed  CAS  Google Scholar 

  32. Kim T, Kim TY, Song YH, Min IM, Yim J, Kim TK (1999) Activation of interferon regulatory factor 3 in response to DNA-damaging agents. J Biol Chem 274(43):30686–30689

    Article  PubMed  CAS  Google Scholar 

  33. Kim TK, Kim T, Kim TY, Lee WG, Yim J (2000) Chemotherapeutic DNA-damaging drugs activate interferon regulatory factor-7 by the mitogen-activated protein kinase kinase-4-cJun NH2-terminal kinase pathway. Cancer Res 60(5):1153–1156

    PubMed  CAS  Google Scholar 

  34. Turner PK, Houghton JA, Petak I, Tillman DM, Douglas L, Schwartzberg L et al (2004) Interferon-gamma pharmacokinetics and pharmacodynamics in patients with colorectal cancer. Cancer Chemother Pharmacol 53(3):253–260

    Article  PubMed  CAS  Google Scholar 

  35. Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R et al (2008) A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J 27(9):1368–1377

    Article  PubMed  CAS  Google Scholar 

  36. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93(23):13084–13089

    Article  PubMed  CAS  Google Scholar 

  37. Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    Article  PubMed  CAS  Google Scholar 

  38. Trenz K, Smith E, Smith S, Costanzo V (2006) ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J 25(8):1764–1774

    Article  PubMed  CAS  Google Scholar 

  39. Chen S, Wang G, Makrigiorgos GM, Price BD (2004) Stable siRNA-mediated silencing of ATM alters the transcriptional profile of HeLa cells. Biochem Biophys Res Commun 317(4):1037–1044

    Article  PubMed  CAS  Google Scholar 

  40. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ et al (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116(22):4578–4587

    Article  PubMed  CAS  Google Scholar 

  41. Williamson CT, Muzik H, Turhan AG, Zamo A, O’Connor MJ, Bebb DG et al (2010) ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9(2):347–357

    Article  PubMed  CAS  Google Scholar 

  42. Buckley NE, Hosey AM, Gorski JJ, Purcell JW, Mulligan JM, Harkin DP et al (2007) BRCA1 regulates IFN-gamma signaling through a mechanism involving the type I IFNs. Mol Cancer Res 5(3):261–270

    Article  PubMed  CAS  Google Scholar 

  43. Parmar S, Platanias LC (2003) Interferons: mechanisms of action and clinical applications. Curr Opin Oncol 15(6):431–439

    Article  PubMed  CAS  Google Scholar 

  44. Samuel CE (2001) Antiviral actions of interferons. Clin Microbiol Rev 14(4):778–809 (table of contents)

    Article  PubMed  CAS  Google Scholar 

  45. Donnelly RP, Kotenko SV (2010) Interferon-lambda: a new addition to an old family. J Interferon Cytokine Res 30(8):555–564

    Article  PubMed  CAS  Google Scholar 

  46. Schwartzberg LS, Petak I, Stewart C, Turner PK, Ashley J, Tillman DM et al (2002) Modulation of the Fas signaling pathway by IFN-gamma in therapy of colon cancer: phase I trial and correlative studies of IFN-gamma, 5-fluorouracil, and leucovorin. Clin Cancer Res 8(8):2488–2498

    PubMed  CAS  Google Scholar 

  47. Ning Y, Riggins RB, Mulla JE, Chung H, Zwart A, Clarke R (2010) IFNgamma restores breast cancer sensitivity to fulvestrant by regulating STAT1, IFN regulatory factor 1, NF-kappaB, BCL2 family members, and signaling to caspase-dependent apoptosis. Mol Cancer Ther 9(5):1274–1285

    Article  PubMed  CAS  Google Scholar 

  48. Li W, Lewis-Antes A, Huang J, Balan M, Kotenko SV (2008) Regulation of apoptosis by type III interferons. Cell Prolif 41(6):960–979

    Article  PubMed  CAS  Google Scholar 

  49. Komita H, Zhao X, Katakam AK, Kumar P, Kawabe M, Okada H et al (2009) Conditional interleukin-12 gene therapy promotes safe and effective antitumor immunity. Cancer Gene Ther 16(12):883–891

    Article  PubMed  CAS  Google Scholar 

  50. Huang FP, Chen YX, To CK (2011) Guiding the “misguided”—functional conditioning of dendritic cells for the DC-based immunotherapy against tumours. Eur J Immunol 41(1):18–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank our colleagues at Rosetta and Merck for support and stimulating discussions. We thank Kenzie MacIsaac for help with GO annotation of PARPi signature gene lists. We thank Jim Roberts, David Wiest, and Brett Kaiser for critical reading of this manuscript. The authors state that there exists no conflict of interest with the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Carleton.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrener, P., Kim, S., Williams, S.M.G. et al. Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ. Apoptosis 17, 691–701 (2012). https://doi.org/10.1007/s10495-012-0707-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0707-4

Keywords

Navigation