Skip to main content

Advertisement

Log in

Phagocytosis of dying cells: influence of smoking and static magnetic fields

  • Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

It is becoming evident that failure in the removal of dying cells causes and/or promotes the onset of chronic diseases. Impairment of phagocytosis of apoptotic cells can be due not only to genetic or molecular malfunctioning but also to external/environmental factors. Two of these environmental factors have been recently reported to down regulate the clearance of apoptotic cells: cigarette smoke and static magnetic fields. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function. Human macrophages interacting with carbonyl or cigarette smoke modified extracellular matrix (ECM) proteins dramatically down regulated their ability to phagocytose apoptotic neutrophils. It was postulated that changes in the ECM environment as a result of cigarette smoke affect the ability of macrophages to remove apoptotic cells. This decreased phagocytic activity was as a result of sequestration of receptors involved in the uptake of apoptotic cells towards that of recognition of carbonyl adducts on the modified ECM proteins leading to increased macrophage adhesion. Downregulation of the phagocytosis of apoptotic cells was also described when performed in presence of static magnetic fields (SMFs) of moderate intensity. SMFs have been reported to perturb distribution of membrane proteins and glycoproteins, receptors, cytoskeleton and trans-membrane fluxes of different ions, especially calcium [Ca2+]i, that in turn, interfere with many different physiological activities, including phagocytosis. The effects of cigarette smoke and SMF on the phagocytosis of dying cells will be here discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  Google Scholar 

  2. Zakeri Z, Bursch W, Tenniswood M et al (1995) Cell death: programmed, apoptosis, necrosis, or other? Cell Death Differ 2:87–96

    PubMed  Google Scholar 

  3. Fiers W, Beyaert R, Declercq W et al (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    PubMed  Google Scholar 

  4. Van Cruchten S, Van Den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    PubMed  Google Scholar 

  5. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    PubMed  Google Scholar 

  6. Krysko D, Vanden Berghe T, D’Herde K, Vandenabeele P (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    PubMed  Google Scholar 

  7. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 16:3–11

    PubMed  Google Scholar 

  8. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    PubMed  Google Scholar 

  9. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    PubMed  Google Scholar 

  10. Krysko D, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    PubMed  Google Scholar 

  11. Fullard JF, Kale A, Baker NE (2009) Clearance of apoptotic corpses. Apoptosis 14:1029–1037

    PubMed  Google Scholar 

  12. Ucker DS (2009) Innate apoptotic immunity: a potent immunosuppressive response repertoire elicited by specific apoptotic cell recognition. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 163–187

    Google Scholar 

  13. Lacy-Hulbert A (2009) Comparative characterization of non-professional and professional phagocytes responses to apoptotic cells. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 189–215

    Google Scholar 

  14. Fadok VA, Bratton DL, Konowal A et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving tgf-beta, pge2, and paf. J Clin Invest 101:890–898

    PubMed  Google Scholar 

  15. Stuart LM, Lucas M, Simpson C et al (2002) Inhibitory effect of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol 168:1627–1635

    PubMed  Google Scholar 

  16. Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes tgf-beta1 secretion and the resolution of inflammation. J Clin Invest 109:41–51

    PubMed  Google Scholar 

  17. Liu K, Iyoka T, Saternus M et al (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196:1091–1097

    PubMed  Google Scholar 

  18. Munoz LE, Gaipl US, Franz S et al (2005) SLE-a disease of clearance deficiency? Rheumatology (Oxford) 44:1101–1107

    Google Scholar 

  19. Vandivier RW, Fadok VA, Hoffmann PR et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    PubMed  Google Scholar 

  20. Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 81:289–296

    PubMed  Google Scholar 

  21. Krysko O, Vandenabeele P, Krysko DV, Bachert C (2010) Impairment of phagocytosis of dying cells and its role in chronic obstructive pulmonary disease, cystic fibrosis and asthma, in press

  22. Schrijvers DM, De Meyer GRY, Kockx MM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscl Thromb Vasc Biol 25:1256–1261

    PubMed  Google Scholar 

  23. Gaipl US, Munoz LE, Grossmayer G et al (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28:114–121

    PubMed  Google Scholar 

  24. Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129:79–94

    PubMed  Google Scholar 

  25. Gurmienny TL, Hengartner MO (2001) How the worm removes corpses: the nematode C. elegans as a model system to study engulfment. Cell Death Differ 8:564–568

    Google Scholar 

  26. Hamon Y, Broccardo C, Chambenoit O et al (2000) ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat Cell Biol 2:399–406

    PubMed  Google Scholar 

  27. Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104:43–56

    PubMed  Google Scholar 

  28. Su HP, Nakada-Tsukui K, Tosello-Trampont AC et al (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CED91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779

    PubMed  Google Scholar 

  29. Kurucz E, Markus R, Zsamboki J et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17:649–654

    PubMed  Google Scholar 

  30. Reddien PW, Horvitz HR (2004) The engulfment process of programmed cell death in Caenorhabditis elegans. Annu Rev Cell Dev Biol 20:193–221

    PubMed  Google Scholar 

  31. Savill JS, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 342:170–173

    Google Scholar 

  32. Albert ML, Kim JI, Birge RB (2000) Alphavbeta5 integrin recruits the CrkII-Dock 180-rac 1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905

    PubMed  Google Scholar 

  33. Savill JS, Hogg N, Ren Y, Haslett CJ (1992) Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils by macrophages. Clin Invest 90:1513–1522

    Google Scholar 

  34. Zhou Z (2007) New phosphatidylserine receptors: clearance of apoptotic cells and more. Dev Cell 13:759–760

    PubMed  Google Scholar 

  35. Dini L, Falasca L, Lentini A et al (1993) Galactose-specific receptor modulation related to the onset of apoptosis in rat liver. Eur J Cell Biol 61:329–337

    PubMed  Google Scholar 

  36. Dini L, Lentini A, Diez GD et al (1995) Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci 108:967–973

    PubMed  Google Scholar 

  37. Dini L, Carlà EC (1998) Hepatic sinusoidal endothelium heterogeneity with respect to the recognition of apoptotic cells. Exp Cell Res 240:388–393

    PubMed  Google Scholar 

  38. Duvall E, Wyllie AH, Morris RG (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351–358

    PubMed  Google Scholar 

  39. Platt N, Pedro da Silva R, Gordon S (1998) Recognition death: the phagocytosis of apoptotic cells. Trends Cell Biol 8:365–372

    PubMed  Google Scholar 

  40. Devitt A, Moffatt OD, Raykundalia C et al (1998) Human cd14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505–509

    PubMed  Google Scholar 

  41. Luciani MF, Chimini G (1996) The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J 15:226–235

    PubMed  Google Scholar 

  42. Oka K, Sawamura T, Kikuta K et al (1998) Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc Natl Acad Sci USA 95:9535–9540

    PubMed  Google Scholar 

  43. Ramprasad MP, Fischer W, Witztum JL et al (1995) The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci USA 92:9580–9584

    PubMed  Google Scholar 

  44. Dini L, Autuori F, Lentini A et al (1992) The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett 296:174–178

    PubMed  Google Scholar 

  45. Dransfield I, Buckle AM, Savill JS et al (1994) Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol 153:1254–1263

    PubMed  Google Scholar 

  46. Hart SP, Ross JA, Ross K et al (2000) Molecular characterization of the surface of apoptotic neutrophils: implications for functional downregulation and recognition by phagocytes. Cell Death Differ 7:493–503

    PubMed  Google Scholar 

  47. Hart SP, Smith JR, Dransfield I (2004) Phagocytosis of opsonized apoptotic cells: roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol 135:181–185

    PubMed  Google Scholar 

  48. Hart SP, Alexander KM, Dransfield I (2004) Immune complexes bind preferentially to Fc gamma RIIA (CD32) on apoptotic neutrophils, leading to augmented phagocytosis by macrophages and release of proinflammatory cytokines. J Immunol 172:1882–1887

    PubMed  Google Scholar 

  49. Cvetanovic M, Mitchell JE, Patel V, Avner BS, Su Y, van der Saag PT, Witte PL, Fiore S, Levine JS, Ucker DS (2006) Specific recognition of apoptotic cells reveals a ubiquitous and unconventional innate immunity. J Biol Chem 281:20055–20067

    PubMed  Google Scholar 

  50. Freire-de-Lima CG, Xiao YQ, Gardai SJ et al (2006) Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem 281:38376–38384

    PubMed  Google Scholar 

  51. Krysko DV, Denecker G, Festjens N et al (2006) Macrophages use different internalisation mechanisms to clear apoptotic and necrotic cells. Cell Death Differ 13:2011–2022

    PubMed  Google Scholar 

  52. Krysko DV, Brouckaert G, Kalai M, Vandenabeele P, D’Herde K (2003) Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. J Morphol 258:336–345

    PubMed  Google Scholar 

  53. Ogden CA, de Cathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795

    PubMed  Google Scholar 

  54. Hoffmann PR, de Cathelineau AM, Ogden CA et al (2001) Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155:649–659

    PubMed  Google Scholar 

  55. Fiorentini C, Falzano L, Fabbri A et al (2001) Activation of rho GTPases by cytotoxic necrotizing factor 1 induces macropinocytosis and scavenging activity in epithelial cells. Mol Biol Cell 12:2061–2073

    PubMed  Google Scholar 

  56. Jersmann HP, Dransfield I, Hart SP (2003) Fetuin/alpha2-HS glycoprotein enhances phagocytosis of apoptotic cells and macropinocytosis by human macrophages. Clin Sci (Lond) 105:273–278

    Google Scholar 

  57. Tardito S, Bussolati O, Gaccioli F et al (2006) Non-apoptotic programmed cell death induced by a copper(II) complex in human fibrosarcoma cells. Histochem Cell Biol 126:473–482

    PubMed  Google Scholar 

  58. Petrovski G, Zahuczky G, Májai G, Fésüs L (2007) Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages. Autophagy 3:509–511

    PubMed  Google Scholar 

  59. Petrovski G, Zahuczky G, Katona K et al (2007) Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Differ 14:1117–1128

    PubMed  Google Scholar 

  60. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795

    PubMed  Google Scholar 

  61. Stuart LM, Boulais J, Charriere GM et al (2007) A systems biology analysis of the Drosophila phagosome. Nature 445:95–101

    PubMed  Google Scholar 

  62. Garin J, Diez R, Kieffer S et al (2001) The phagosome proteome: insight into phagosome functions. J Cell Biol 152:165–180

    PubMed  Google Scholar 

  63. Cuttell L, Vaughan A, Silva E et al (2008) Undertaker, a Drosophila junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534

    PubMed  Google Scholar 

  64. Kurant E, Axelrod S, Leaman D, Gaul U (2008) Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133:498–509

    PubMed  Google Scholar 

  65. Yu X, Lu N, Zhou Z (2008) Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol 6:e61. doi:10.1371/journal.pbio.0060061

    PubMed  Google Scholar 

  66. Paidassi H, Tacnet-Delorme P, Arlaud GJ, Frachet P (2009) How phagocytes track down and respond to apoptotic cells. Crit Rev Immunol 29:111–130

    PubMed  Google Scholar 

  67. Cocco RE, Ucker DS (2001) Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure. Mol Biol Cell 12:919–930

    PubMed  Google Scholar 

  68. Patel VA, Longacre A, Hsiao K et al (2006) Apoptotic cells, at all stages of the death process, trigger characteristic signalling events that are divergent from and dominant over those triggered by necrotic cells: implications for the delayed clearance model of autoimmunity. J Biol Chem 281:4663–4670

    PubMed  Google Scholar 

  69. Peter C, Wesselborg S, Lauber K (2009) Role of attraction and danger signals in the uptake of apoptotic and necrotic cells and its immunological outcome. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 63–101

    Google Scholar 

  70. Napirei M, Mannherz HG (2009) Molecules involved in recognition and clearance of apoptotic/necrotic cells and cell debris. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 103–145

    Google Scholar 

  71. Ishido M (2006) Apoptosis induced by environmental factors. In: Shultz LB (ed) Cell Apoptosis: regulation and enviromental factors. Nova Science Publishers, New York, pp 141–156

    Google Scholar 

  72. Ren Y, Tang J, Mok MY et al (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    PubMed  Google Scholar 

  73. Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    PubMed  Google Scholar 

  74. Kruse K, Janko C, Urbonaviciute V et al (2010) Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis [Epub ahead of print]

  75. O’Brien BA, Fieldus WE, Field CJ, Finegood DT (2002) Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats. Cell Death Differ 9:457–464

    PubMed  Google Scholar 

  76. Zhi-Hua Chen, Kim Frank HP, Sciurba C et al (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS one 3:e3316

    Google Scholar 

  77. Celli BR, MacNee W, ATS/ERS Task Force (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946

    PubMed  Google Scholar 

  78. Pesci A, Majori M, Cuomo A, Borciani N, Bertacco S, Cacciani G, Gabrielli M (1998) Neutrophils infiltrating bronchial epithelium in chronic obstructive pulmonary disease. Respir Med 92:863–870

    PubMed  Google Scholar 

  79. Saetta M (1998) Mechanisms of bronchial obstruction in COPD and emphysema: from anatomopathology to respiratory function. Rev Mal Respir 15(Suppl 2):S17–S19

    PubMed  Google Scholar 

  80. Barnes P (2000) Mechanisms in COPD: differences from asthma. Chest 117:10S–14S

    PubMed  Google Scholar 

  81. Hoffmann D, Hoffmann I (1997) The changing cigarette, 1950–1995. J Toxicol Environ Health 50:307–364

    PubMed  Google Scholar 

  82. Smith CJ, Perfetti TA, Garg R et al (2003) IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem Toxicol 41:807–817

    PubMed  Google Scholar 

  83. Kier LD, Yamashi E, Ames B (1974) Detection of mutagenic activity in cigarette smoke condensates. Proc Nat Acad Sci USA 71:4159–4163

    PubMed  Google Scholar 

  84. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    PubMed  Google Scholar 

  85. Arabi M (2004) Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia 36:305–310

    PubMed  Google Scholar 

  86. Argentin G, Cicchetti R (2004) Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts. Toxicol Sci 79:75–81

    PubMed  Google Scholar 

  87. Cooke JP, Bitterman H (2004) Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med 36:33–40

    PubMed  Google Scholar 

  88. Kleinsasser NH, Sassen AW, Semmler MP et al (2005) The tobacco alkaloid nicotine demonstrates 88-genotoxicity in human tonsillar tissue and lymphocytes. Toxicol Sci 86:309–317

    PubMed  Google Scholar 

  89. Schuller HM (1994) Carbon dioxide potentiates the mitogenic effects of nicotine and its carcinogenic derivative, NNK, in normal and neoplastic neuroendocrine lung cells via stimulation of autocrine and protein kinase C-dependent mitogenic pathways. Neurotoxicology 15:877–886

    PubMed  Google Scholar 

  90. Shin VY, Wu WK, Ye YN et al (2004) Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25:2487–2495

    PubMed  Google Scholar 

  91. Mayer AS, Newman LS (2001) Genetic and environmental modulation of chronic obstructive pulmonary disease. Respir Physiol 128:3–11

    PubMed  Google Scholar 

  92. Rutgers SR, Timens W, Kauffman HF, Postma DS (2001) Markers of active airway inflammation and remodeling in chronic obstructive pulmonary disease. Clin Exp Allergy 31:193–205

    PubMed  Google Scholar 

  93. Rahman I, Biswas SK, Kode A (2006) Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 533:222–239

    PubMed  Google Scholar 

  94. Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 21:669–681

    PubMed  Google Scholar 

  95. Tuder RM, Zhen L, Cho CY (2003) Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 29:88–97

    PubMed  Google Scholar 

  96. Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, Hubbar WC, Berdyshev EV, Tuder RM (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 11:491–498

    PubMed  Google Scholar 

  97. Kasahara Y, Tuder RM, Cool CD et al (2001) Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med 163:737–744

    PubMed  Google Scholar 

  98. Yokohori N, Aoshiba K, Nagai A (2004) Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 125:626–632

    PubMed  Google Scholar 

  99. Imai K, Mercer BA, Schulman LL et al (2005) Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 25:250–258

    PubMed  Google Scholar 

  100. Ryter SW, Chen ZH, Kim HP, Choi AM (2009) Autophagy in chronic obstructive pulmonary disease: homeostatic or pathogenic mechanism? Autophagy 5:235–237

    PubMed  Google Scholar 

  101. Aoshiba K, Tamaoki J, Nagai A (2001) Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 281:1392–1401

    Google Scholar 

  102. Wang HY, Shin VY, Leung SY et al (2003) Involvement of bcl-2 and caspase-3 in apoptosis induced by cigarette smoke extract in the gastric epithelial cell. Toxicol Pathol 31:220–226

    PubMed  Google Scholar 

  103. Slebos DJ, Ryter SW, van der Toorn M et al (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 36:409–417

    PubMed  Google Scholar 

  104. Kim HP, Wang X, Chen ZH et al (2008) Autophagic proteins regulate cigarette smoke-induced apoptosis. Protective role of heme oxygenase-1. Autophagy 4:887–895

    PubMed  Google Scholar 

  105. Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11:R795–R805

    PubMed  Google Scholar 

  106. Odaka C, Mizuochi T, Yang J, Ding A (2003) Murine macrophages produce secretory leukocyte protease inhibitor during clearance of apoptotic cells: implications for resolution of the inflammatory response. J Immunol 171:1507–1514

    PubMed  Google Scholar 

  107. Morimoto K, Amano H, Sonoda F et al (2001) Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. Am J Respir Cell Mol Biol 24:608–615

    PubMed  Google Scholar 

  108. Golpon HA, Fadok VA, Taraseviciene-Stewart L et al (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718

    PubMed  Google Scholar 

  109. Morimoto K, Janssen WJ, Fessler MB et al (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    PubMed  Google Scholar 

  110. Ferrara A, Bisetti A, Azzarà V (1996) The rational basis of hyperreactivity of the integrated respiratory tract. Acta Otorhinolaryngol Ital 16:4–28

    PubMed  Google Scholar 

  111. Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129:1673–1682

    PubMed  Google Scholar 

  112. Douglas IS, Diaz del Valle F, Winn RA, Voelkel NF (2006) β-Catenin in the fibroproliferative response to acute lung injury. Am J Respir Cell Mol Biol 34:274–285

    PubMed  Google Scholar 

  113. Henson PM, Vandivier RW, Douglas IS (2006) Cell death, remodelling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 3:713–717

    PubMed  Google Scholar 

  114. Hoffmann PR, Kench JA, Vondracek A et al (2005) Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol 174:1393–1404

    PubMed  Google Scholar 

  115. Lee KM, Renne RA, Harbo SJ et al (2007) 3-Week inhalation exposure to cigarette smoke and/or lipopolysaccharide in AKR/J mice. Inhal Toxicol 19:23–35

    PubMed  Google Scholar 

  116. Martin RJ, Wexler RB, Day BJ et al (2006) Interaction between cigarette smoke and mycoplasma infection: a murine model. J Chronic Obstr Pulm Dis 3:3–8

    Google Scholar 

  117. Stringer KA, Tobias M, O’Neill HC et al (2007) Cigarette smoke extract-induced suppression of caspase-3-like activity impairs human neutrophil phagocytosis. Am J Physiol Lung Cell Mol Physiol 292:L1572–L1579

    PubMed  Google Scholar 

  118. Hoffmann PR (2004) Molecular regulation of neutrophil apoptosis and potential targets for therapeutic strategy against the inflammatory process. Curr Drug Targets Inflamm Allergy 3:1–9

    Google Scholar 

  119. Maianski NA, Maianski AN, Kuijpers TW, Roos D (2004) Apoptosis of neutrophils. Acta Haematol 111:56–66

    PubMed  Google Scholar 

  120. Zhu D, Hattori H, Jo H et al (2006) Deactivation of phosphatidylinositol 3,4,5-trisphosphate/Akt signalling mediates neutrophil spontaneous death. Proc Natl Acad Sci USA 103:14836–14841

    PubMed  Google Scholar 

  121. Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species and MAPK/ERK activation. J Biol Chem 278:28443–28454

    PubMed  Google Scholar 

  122. Hoshino Y, Mio T, Nagai S et al (2001) Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol Lung Cell Mol Physiol 281:L509–L516

    PubMed  Google Scholar 

  123. Ishii T, Matsuse T, Igarashi H et al (2001) Tobacco smoke reduces viability in human lung fibroblasts: protective effect of glutathione-S-transferase PI. Am J Physiol Lung Cell Mol Physiol 280:L1189–L1195

    PubMed  Google Scholar 

  124. Liu X, Conner H, Kobayashi T et al (2005) Cigarette smoke extract induces DNA damage but not apoptosis in human bronchial epithelial cells. Am J Respir Cell Mol Biol 33:121–129

    PubMed  Google Scholar 

  125. Tuder RM, Wood K, Taraseviciene L et al (2000) Cigarette smoke extract decreases the expression of vascular endothelial growth factor by cultured cells and triggers apoptosis of pulmonary endothelial cells. Chest 117:241S–242S

    PubMed  Google Scholar 

  126. Vayssier M, Banzet N, Francois D et al (1998) Tobacco smoke induces both apoptosis and necrosis in mammalian cells: differential effects of HSP70. Am J Physiol Lung Cell Mol Physiol 275:L7771–L7779

    Google Scholar 

  127. Wang J, Wilcken DE, Wang XL (2001) Cigarette smoke activates caspase-3 to induce apoptosis of human umbilical venous endothelial cells. Mol Genet Metab 72:82–88

    PubMed  Google Scholar 

  128. Wickenden JA, Clarke MC, Rossi AG et al (2003) Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am J Respir Cell Mol Biol 29:562–570

    PubMed  Google Scholar 

  129. Park JW, Ryter SW, Choi AMK (2007) Functional significance of apoptosis in chronic obstructive pulmonary disease. J Chronic Obstr Pulm Dis 4:347–353

    Google Scholar 

  130. Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 25:447–454

    PubMed  Google Scholar 

  131. Schick SF, Glantz S (2007) Concentration of the carcinogen 4-(methylnitrosamine)-1-(3-pyridyl)-1-Butanone in sidestream cigarette smoke increase after release into indoor air: results from unpublished tobacco industry research. Cancer Epidemiol Biomarkers Prev 16:1547–1553

    PubMed  Google Scholar 

  132. Hodge S, Hodge G, Ahern J et al (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Resp Cell Mol Biol 37:748–755

    Google Scholar 

  133. Prieto A, Reyes E, Bernstein ED et al (2001) Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by glycophosphopeptical (inmunoferon). Am J Respir Crit Care Med 163:1578–1583

    PubMed  Google Scholar 

  134. Finney-Hayward TK, Russell REK, Kon OM et al (2005) Decreased phagocytotic activity of monocyte-derived macrophages in patients with COPD. Proc Am Thorac Soc 2:A17

    Google Scholar 

  135. Borges VM, Vandivier RW, McPhillips KA et al (2009) TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol Lung Cell Mol Physiol 297:L586–L595

    PubMed  Google Scholar 

  136. Reynolds PN, Hodge SJ (2009) The impact of defective clearance of apoptotic cells in the pathogenesis of chronic lung diseases: chronic obstructive pulmonary disease, asthma and cystic fibrosis. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 339–407

    Google Scholar 

  137. Pouniotis DS, Plebanski M, Apostolopoulos V et al (2006) Alveolar macrophage function is altered in patients with lung cancer. Clin Exp Immunol 143:363–372

    PubMed  Google Scholar 

  138. Hodge S, Hodge G, Brozyna S et al (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    PubMed  Google Scholar 

  139. Richens TR, Linderman DJ, Horstmann SA et al (2009) Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 179:1011–1021

    PubMed  Google Scholar 

  140. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    PubMed  Google Scholar 

  141. Kirkham PA, Spooner G, Ffoulkes-Jones C et al (2003) Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Radic Biol Med 35:697–710

    PubMed  Google Scholar 

  142. Kirkham PA, Spooner G, Rahman I et al (2004) Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 318:32–37

    PubMed  Google Scholar 

  143. Pak MorandiMA, CM CarenRP, Caren LD (1996) Lack of an EMF-induced genotoxic effect in the Ames assay. Life Sci 59:263–271

    PubMed  Google Scholar 

  144. Ikehata M, Koana T, Suzuki Y et al (1999) Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res 427:147–156

    PubMed  Google Scholar 

  145. Loscher W, Liburdy RP (1998) Animal and cellular studies on carcinogenic effects of low frequency (50–60-Hz) magnetic fields. Mutat Res 410:185–220

    PubMed  Google Scholar 

  146. Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217

    PubMed  Google Scholar 

  147. Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173

    PubMed  Google Scholar 

  148. Tenuzzo B, Chionna A, Panzarini E et al (2006) Biological effects of 6 mT static magnetic fields: a comparative study in different cell types. Bioelectromagnetics 27:560–577

    PubMed  Google Scholar 

  149. Fanelli C, Coppola S, Barone R et al (1999) Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J 13:95–102

    PubMed  Google Scholar 

  150. Teodori L, Göhde W, Valente MG et al (2002) Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry 49:143–149

    PubMed  Google Scholar 

  151. Teodori L, Grabarek J, Smolewski P et al (2002) Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49:113–118

    PubMed  Google Scholar 

  152. Chionna A, Dwikat M, Panzarini E et al (2003) Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem 47:299–308

    PubMed  Google Scholar 

  153. Chionna A, Panzarini E, Pagliara P et al (2003) Hepatic clearance of apoptotic lymphocytes: simply removal of waste cells? Eur J Histochem 47:97–104

    PubMed  Google Scholar 

  154. Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648

    PubMed  Google Scholar 

  155. Ghibelli L, Cerella C, Cordisco S et al (2006) NMR exposure sensitizes tumor cells to apoptosis. Apoptosis 11:359–365

    PubMed  Google Scholar 

  156. Ding GR, Yaguchi H, Yoshida M et al (2000) Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-κB-inhibited cells. Biochem Biophys Res Commun 276:238–243

    PubMed  Google Scholar 

  157. Tian F, Nakahara T, Yoshida M et al (2002) Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun 292:355–361

    PubMed  Google Scholar 

  158. Marino AA, Iliev IG, Schwalke MA et al (1994) Association between cell membrane potential and breast cancer. Tumour Biol 15:82–89

    PubMed  Google Scholar 

  159. Capko D, Zhuravkov A, Davies RJ (1996) Transepithelial depolarisation in breast cancer. Breast Cancer Res 41:230

    Google Scholar 

  160. Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155

    PubMed  Google Scholar 

  161. Tofani S, Barone D, Berardelli M et al (2003) Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res 48:83–90

    PubMed  Google Scholar 

  162. Abbro L, Lanubile R, Dini L (2004) Liver recognition of young and aged lymphocytes exposed to magnetic pollution. Recent Res Dev Cell Sci 1:83–97

    Google Scholar 

  163. Dini L (2006) Recognition and engulfment of the apoptotic cells: influence of the environment. In: Shultz LB (ed) Cell apoptosis: regulation and environmental factors. Nova Science Publishers, New York, pp 85–111

    Google Scholar 

  164. Tenuzzo B, Vergallo C, Dini L (2009) Effect of 6 mT static magnetic field on the bcl-2, bax, p53 and hsp 70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell 41:169–179

    PubMed  Google Scholar 

  165. Liburdy RP, Sloma TR, Sokolic R et al (1993) ELF magnetic fields, breast cancer, and melatonin: 50 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. J Pineal Res 14:89–97

    PubMed  Google Scholar 

  166. Flipo D, Fournier M, Benquet C et al (1998) Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A 54:63–76

    PubMed  Google Scholar 

  167. Chionna A, Tenuzzo B, Panzarini E et al (2005) Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics 26:275–286

    PubMed  Google Scholar 

  168. Yu JT, Chang RCC, Tan L (2009) Calcium dysregulation in Alzheimer’s disease: from mechanisms to therapeutic opportunities. Prog Neurobiol 89:240–255

    PubMed  Google Scholar 

  169. Bian X, Hughes FM Jr, Huang Y et al (1997) Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am J Physiol 272:C1241–C1249

    PubMed  Google Scholar 

  170. Magnelli L, Cinelli M, Turchetti A et al (1994) Apoptosis induction in 32D cells by IL-3 withdrawal is preceded by a drop in the intracellular calcium level. Biochem Biophys Res Commun 194:1394–1397

    Google Scholar 

  171. Okano H (2008) Effects of static magnetic fields in biology: role of free radicals. Front Biosc 13:6106–6125

    Google Scholar 

  172. Buemi M, Marino D, Di Pasquale G et al (2001) Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron 87:269–273

    PubMed  Google Scholar 

  173. Nuccitelli S, Cerella C, Cordisco S et al (2006) Hyperpolarization of plasma membrane of tumour cells sensitive to antiapoptotic effects of magnetic fields. Ann N Y Acad Sci 1090:217–225

    PubMed  Google Scholar 

  174. Lange K (1999) Microvillar Ca++ signaling: a new view of an old problem. J Cell Physiol 180:19–34

    PubMed  Google Scholar 

  175. Lange K (2000) Microvillar ion channels: cytoskeletal modulation of ion fluxes. J Theor Biol 206:561–884

    PubMed  Google Scholar 

  176. Gartzke J, Lange K (2002) Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 283:C1333–C1346

    PubMed  Google Scholar 

  177. Pagliara P, Lanubile R, Dwikat M et al (2005) Differentiation of monocytic U937 cells under static magnetic field exposure. Eur J Histochem 49:75–86

    PubMed  Google Scholar 

  178. Popov SV, Svitkina TM, Margolis LB et al (1991) Mechanism of cell protrusion formation in electrical field: the role of actin. Biochem Biophys Acta 1066:151–158

    PubMed  Google Scholar 

  179. Santoro N, Lisi A, Pozzi D et al (1997) Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochem Biophys Acta 1357:281–290

    PubMed  Google Scholar 

  180. Miyakoshi J (2005) Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 87:213–223

    PubMed  Google Scholar 

  181. Amara S, Douki T, Ravanat JL et al (2007) Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells. Phys Med Biol 52:889–898

    PubMed  Google Scholar 

  182. Silva AKA, Silva EL, Egito EST et al (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45:245–252

    PubMed  Google Scholar 

  183. Rosen AD (1993) Membrane response to static magnetic fields: effect of exposure duration. Biochim Biophys Acta 1148:317–320

    PubMed  Google Scholar 

  184. Hamada SH, Witkus R, Griffith R Jr (1989) Cell surface changes during electromagnetic field exposure. Exp Cell Biol 57:1–10

    PubMed  Google Scholar 

  185. Paradisi S, Donelli G, Santini MT et al (1993) A 50-Hz magnetic field induces structural and biophysical changes in membranes. Bioelectromagnetics 14:247–255

    PubMed  Google Scholar 

  186. Lisi A, Pozzi D, Pasquali E et al (2000) Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics 21:46–51

    PubMed  Google Scholar 

  187. Rieti S, Manni V, Lisi A et al (2004) SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). J Micros 213:20–28

    Google Scholar 

  188. Bersani F, Marinelli F, Ognibene A et al (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469

    PubMed  Google Scholar 

  189. IuN Bordiushkov, Goroshinskaia IA, Frantsiiants EM et al (2000) Structural–functional changes in lymphocyte and erythrocyte membranes after exposure to alternating magnetic field. Vopr Med Khim 46:72–80

    Google Scholar 

  190. Goodman R, Wei LX, Bumann J et al (1992) Exposure of human cells to electromagnetic fields: effect of time and field strength on transcript levels. J Electro Magnetobiol 11:19–28

    Google Scholar 

  191. Hirose H, Nakahara T, Zhang QM et al (2003) Static magnetic field with a strong magnetic field gradient (41.7 T/m) induces c-Jun expression in HL-60 cells. In vitro Cell Dev Biol Anim 39:348–352

    PubMed  Google Scholar 

  192. De Mattei M, Gagliano N, Moscheni C et al (2005) Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 26:207–214

    PubMed  Google Scholar 

  193. Cutolo M, Carruba G, Villaggio B et al (2001) Phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) up-regulates the expression of estrogen receptors in human THP-1 leukemia cells. J Cell Biochem 83:390–400

    PubMed  Google Scholar 

  194. Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574

    PubMed  Google Scholar 

  195. Kai S, Ikonen E (1997) Functional rafts in cell membrane. Nature 387:569–572

    Google Scholar 

  196. Anderson RGW (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    PubMed  Google Scholar 

  197. Lisanti MP, Scherer PE, Tang ZL et al (1994) Caveolaer, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235

    PubMed  Google Scholar 

  198. Parton RG, Simons K (1995) Digging into caveole. Science 269:1398–1399

    PubMed  Google Scholar 

  199. Casey PJ (1995) Protein lipidation in cell signalling. Science 268:221–225

    PubMed  Google Scholar 

  200. Tenforde TS, Liburdy RP (1988) Magnetic deformation of phospholipid bilayers: effects on lysosome shape and solute permeability at prephase transition temperatures. J Theor Biol 133:385–396

    Google Scholar 

  201. Dini L (2010) Static magnetic field interferes with the physiological removal of circulating apoptotic lymphocytes. PIERS Proceedings in Xi’an 2010 (ISSN 1559-9450)

  202. Somosy Z (2000) Radiation response of cell organelles. Micron 31:165–181

    PubMed  Google Scholar 

  203. Testorf MF, Oberg PA, Iwasaka M et al (2002) Melanophore aggregation in strong static magnetic fields. Bioelectromagnetics 23:444–449

    PubMed  Google Scholar 

  204. Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    PubMed  Google Scholar 

  205. Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    PubMed  Google Scholar 

  206. Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11:4339–4346

    PubMed  Google Scholar 

  207. Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179:79–102

    PubMed  Google Scholar 

  208. Simkó M, Droste S, Kriehuber R et al (2001) Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 80:562–566

    PubMed  Google Scholar 

  209. Cappelli G, Volpe P, Sanduzzi A et al (2001) Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97. Infect Immun 69:7262–7270

    PubMed  Google Scholar 

  210. Volpe P, Cappelli G, Mariani F (2002) Macrophage sensitivity to static magnetic fields. In: Kostarakis P et al (eds) Biological effects of EMFs, vol I. Demokritos Publishers, Rhodes, pp 374–381

    Google Scholar 

  211. Bernard G, Breittmayer JP, de Matteis M et al (1997) Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 158:2543–2550

    PubMed  Google Scholar 

  212. Alberti I, Bernard G, Rouquette-Jazdanian AK et al (2002) CD99 isoforms expression dictates T cell functional outcomes. FASEB J 16:1946–1948

    PubMed  Google Scholar 

  213. Maio M, Del Vecchio L (1992) Expression and functional role of CD54/Intercellular Adhesion Molecule-1 (ICAM-1) on human blood cells. Leuk Lymphoma 8:23–33

    PubMed  Google Scholar 

  214. Lauber K, Blumenthal SG, Waibel M et al (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287

    PubMed  Google Scholar 

  215. Jehle AW, Gardai SJ, Li S et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174:547–556

    PubMed  Google Scholar 

  216. Dini L, Vergallo C (2009) Environmental factors affecting phagocytosis of dying cells: smoking and static magnetic fields. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human diseases. Springer, USA, pp 409–438

    Google Scholar 

  217. Crispe IN, Dao T, Klugewitz K et al (2000) The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev 174:47–62

    PubMed  Google Scholar 

  218. Sun EW, Shi YF (2001) Apoptosis: the quiet death silences the immune system. Pharmacol Ther 92:135–145

    PubMed  Google Scholar 

  219. Dini L, Pagliara P, Carlà EC (2002) Phagocytosis of apoptotic cells by liver: a morphological study. Micros Res Technol 57:530–540

    Google Scholar 

  220. Dini L (2005) Phagocyte and apoptotic cell interplay. In: Scovassi AI (ed) Apoptosis, 2005. Research Signpost, Kerala, India, pp 107–129

    Google Scholar 

  221. Massimi M, Devirgiliis LC, Kolb-Bachofen V et al (1995) Independent modulation of galactose-specific receptor expression in rat liver cells. Hepatology 22:1819–1828

    PubMed  Google Scholar 

  222. Pagliara P, Chionna A, Panzarini E et al (2003) Lymphocytes apoptosis: young versus aged and humans versus rats. Tissue Cell 35:29–36

    PubMed  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr Elvira Palma for helpful comments on the manuscript and for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Dini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dini, L. Phagocytosis of dying cells: influence of smoking and static magnetic fields. Apoptosis 15, 1147–1164 (2010). https://doi.org/10.1007/s10495-010-0490-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0490-z

Keywords

Navigation