Skip to main content

Advertisement

Log in

Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Exponentially growing human erythroleukemia K562 cells were synchronized by centrifugal elutriation prior to and after Co60 γ-irradiation (4 Gy). Forward scatter flow cytometry used for size analysis revealed the increase of an early apoptotic cell population ranging from lower (0.05 C-value) to higher DNA content (∼1 C) as the cells progressed through the S phase. The increase in cellular DNA content expressed in C-values correlated with apoptotic chromatin changes manifested as many small apoptotic bodies in early S phase and larger but less numerous disintegrated apoptotic bodies in late S phase. Most significant changes after exposure to γ-irradiation took place in early S phase resulting in an increase of nuclear size by more than 50%. Cell fractions containing irradiated cells showed enhanced growth arrest at 2.4 C-value, which was accompanied by apoptosis. Apoptotic cell cycle arrest near to the G1/G0 checkpoint and apoptotic changes indicate that the radiation resistance of K562 cells is related to the bypass of the early stage of the p53 apoptotic pathway. Apoptotic changes in chromatin structure induced by γ-irradiation indicate that these injury-specific changes can be identified and distinguished from chromatin changes induced by UV radiation or heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mylliperkiö MH, Koski TR, Vilpo LM, Vilpo JA (1999) Gamma-irradiation-induced DNA single- and double-strand breaks and their repair in chronic lymphoid leukemia cells of variable radiosensitivity. Hematol Cell Ther 41:95–103

    Article  Google Scholar 

  2. Miyashita T, Krajewski S, Krajewski M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  3. Chen P, Lavarone A, Fick J, Edwards M, Prados M, Israel MA (1995) Constitutional p53 mutations associated with brain tumors in young adults. Cancer Genet Cytogenet 82:106–115

    Article  PubMed  CAS  Google Scholar 

  4. Haas-Kogan DA, Yount G, Haas M, Levi D, Kogan SS, Hu L, Vidair C, Deen DF, Dewey WC, Israel MA (1996) p53-dependent G1 arrest and p53-independent apoptosis influence the radiobiologic response of glioblastoma. Int J Radiat Oncol Biol Phys 36:95–103

    Article  PubMed  CAS  Google Scholar 

  5. Yount GL, Haas-Kogan DA, Vidair CA, Haas M, Dewey WC, Israel MA (1996) Cell cycle synchrony unmasks the influence of p53 function on radiosensitivity of human glioblastoma cells. Cancer Res 56:500–506

    PubMed  CAS  Google Scholar 

  6. Damiano JS, Hazlehurst LA, Dalton WS (2001) Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and γ-irradiation. Leukemia 15:1232–1239

    Article  PubMed  CAS  Google Scholar 

  7. Offer H, Zurer I, Banfalvi G, Reha’k M, Falcovitz A, Milyavsky M, Goldfinger N, Rotter V (2001) p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res 61:88–96

    PubMed  CAS  Google Scholar 

  8. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  PubMed  CAS  Google Scholar 

  9. Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359:599–604

    Article  PubMed  CAS  Google Scholar 

  10. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  11. Nagy G, Gacsi M, Rehak M, Basnakian AG, Klaisz M, Banfalvi G (2004) Gamma irradiation-induced apoptosis in murine pre-B cells prevents the condensation of fibrillar chromatin in early S phase. Apoptosis 9:765–776

    Article  PubMed  CAS  Google Scholar 

  12. Ujvarosi K, Hunyadi J, Nagy G, Pocsi I, Banfalvi G (2007) Preapoptotic chromatin changes induced by ultraviolet B irradiation in human erythroleukemia K562 cells. Apoptosis DOI 10.101007/s10495-007-0118-0

  13. Amarante-Mendes GP, Naekyung KC, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K (1998) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91:1700–1705

    PubMed  CAS  Google Scholar 

  14. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45:321–334

    PubMed  CAS  Google Scholar 

  15. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  16. Salzman GC, Mullaney PF, Price BJ (1979) Light scattering approaches to cell characterization. In: Melamed MR, Mullaney PF, Mendelsohn MR (eds) Flow cytometry and sorting. John Wiley and Sons, New York

    Google Scholar 

  17. Basnakian A, Banfalvi G, Sarkar N (1989) Contribution of DNA polymerase delta to DNA replication in permeable CHO cells synchronized in S phase. Nucleic Acids Res 17:4757–4767

    Article  PubMed  CAS  Google Scholar 

  18. Kireeva N, Lakonishok M, Kireev I, Hirano T, Belmont AS (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol 166:775–785

    Article  PubMed  CAS  Google Scholar 

  19. Nemeth A, Langst G (2004) Chromatin higher order structure: opening up chromatin for transcription. Brief Funct Genomic Proteomic 2:334–343

    Article  PubMed  CAS  Google Scholar 

  20. Banfalvi G, Sooki-Toth A, Sarkar N, Csuzi S, Antoni F (1984) Nascent DNA synthesized reversibly permeable cells of mouse thymocytes. Eur J Biochem 139:553–559

    Article  PubMed  CAS  Google Scholar 

  21. Banfalvi G (1993) Fluorescent analysis of replication and intermediates of chromatin folding in nuclei of mammalian cells. In: Bach PH, Reynolds CH, Clark JM, Poole PL, Mottley J (eds) Biotechnology applications of microinjection, microscopic imaging and fluorescence. Plenum Press, New York, pp 109–118

    Google Scholar 

  22. Henegariu O, Heerema NA, Lowe Wright L, Bray-Ward P, Ward DC, Vanve GH (2001) Improvements in cytogenic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43:101–109

    Article  PubMed  CAS  Google Scholar 

  23. Buendia B, Santa-Maria A, Courvalin JC (1999) Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci 112:1743–1753

    PubMed  CAS  Google Scholar 

  24. Banfalvi G, Nagy G, Gacsi M, Roszer T, Basnakian AG (2006) Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol 25:295–301

    Article  PubMed  CAS  Google Scholar 

  25. Trencsenyi G, Kertai P, Somogyi C, Nagy G, Dombradi Z, Gacsi M, Banfalvi G (2007) Chemically induced carcinogenesis affecting chromatin structure in rat hepatocarcinoma cells. DNA Cell Biol 26:649–655.

    Article  PubMed  CAS  Google Scholar 

  26. Banfalvi G, Gacsi M, Nagy G, Kiss ZB, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10:631–642

    Article  PubMed  CAS  Google Scholar 

  27. Banfalvi G, Ujvarosi K, Trencsenyi G, Somogyi C, Nagy G, Basnakiann AG (2007) Cell culture density dependent toxicity and chromatin changes upon cadmium treatment in murine pre-B-cells. Apoptosis 12:1219–1228

    Article  PubMed  CAS  Google Scholar 

  28. Gacsi M, Nagy G, Pinter G, Basnakian AG, Banfalvi G (2005) Condensation of interphase chromatin in nuclei of synchronized chinese hamster ovary (CHO-K1) cells. DNA Cell Biol 24:43–53

    Article  PubMed  CAS  Google Scholar 

  29. Mikhailov A, Rieder CL (2002) Cell cycle: stressed out of mitosis. Curr Biol 12:R331–333

    Article  PubMed  CAS  Google Scholar 

  30. Rexford L, Christopher T Jr, Matsko M, Lotze MT, Amoscato AA (1999) Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem 274:30580–30588

    Article  Google Scholar 

  31. Strasser-Wozak EMC, Hartmann BL, Geley S, Sgonc R, Böck G, Oliveira dos Santos A, Hattmannstorfer R, Wolf H, Pavelka M, Kofler R (1998) Irradiation induced G2/M cell cycle arrest and apoptosis in p53-deficient lymphoblastic leukemia cells without affecting Bcl-2 and Bax expression. Cell Death Differ 5:687–693

    Article  PubMed  CAS  Google Scholar 

  32. Elia MC, Bradley MO (1992) Influence of chromatin structure on the induction of double strand breaks by ionizing radiation. Cancer Res 52:1580–1586

    PubMed  CAS  Google Scholar 

  33. Liedberg B, Nylander CI, Lundstrom L (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators B Chem 4:299–304

    Article  CAS  Google Scholar 

  34. Shapiro HM (2003) Practical flow cytometry 4th edn. Wiley-Liss, Hoboken

    Google Scholar 

  35. Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidem Biomar Prevent 9:1005–1015

    CAS  Google Scholar 

  36. Šrám RJ, Podrazilová K, Dejmek D, Mračková G, Pilčík T (1998) Single cell gel electrophoresis assay: sensitivity of peripheral white blood cells in human population studies. Mutagenesis 13:99–103

    PubMed  Google Scholar 

  37. Hoffmann H, Högel J, Speit G (2005) The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis 20:455–466

    Article  PubMed  CAS  Google Scholar 

  38. Rössler U, Hornhardt S, Seidl C, Müller-Laue E, Walsh L, Panzer W, Schmid E, Senekowitsch-Schmidtke R, Gomolka M (2006) The sensitivity of the alkaline comet assay in detecting DNA lesions induced by X rays, gamma rays and alpha particles. Radiat Prot Dosimetry 122:154–159

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by an OTKA grant T042762 (G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspar Banfalvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfalvi, G., Klaisz, M., Ujvarosi, K. et al. Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 12, 2271–2283 (2007). https://doi.org/10.1007/s10495-007-0146-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0146-9

Keywords

Navigation