Skip to main content
Log in

Experimental Investigation of Separated Shear Flow under Subharmonic Perturbations over a Backward-Facing Step

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Subharmonic-perturbed shear flow downstream of a two-dimensional backward-facing step was experimentally investigated. The Reynolds number was Reh = 2.0 ×104, based on free-stream velocity and step height. Planar 2D-2C particle image velocimetry was employed to measure the separating and reattaching flow in the horizontal-vertical plane in the center position. The subharmonic perturbations were generated by an oscillating flap which was implemented over the step edge and driven by periodic Ampere force. The subharmonic frequency was 55 Hz as the half of the fundamental frequency of the turbulent shear layer. As a result of the subharmonic perturbations, the size of recirculation region behind the backward-facing step is reduced and the time-averaged reattachment length is 31.0% shorter than that of the natural flow. The evolution of vortices, including vortex roll-up, growth and breakdown process, is analyzed by using phase-averaging, cross-correlation function and proper orthogonal decomposition. It is found that Reynolds shear stress is considerably increased in which the vortices roll up and then break down further downstream. In particular, rapid growth of vortices based on the “step mode” occurs at approximate half of the recirculation region, caused by in interaction between the shear layer and the recirculation region. Furthermore, the coherent structures, which are represented by a phase-correlated POD mode pair, are reconstructed in phases in order to show regular patterns of the subharmonic-perturbed coherent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Eaton, J.K., Johnston, J.P.: A review of research on subsonic turbulent-flow reattachment. AIAA J. 19, 1093–1100 (1981)

    Article  Google Scholar 

  2. Bhattacharjee, S., Scheelke, B., Troutt, T.R.: Modification of vortex interactions in a reattaching separated flow. AIAA J. 24(4), 623–629 (1986)

    Article  Google Scholar 

  3. Hasan, M.A.Z.: The flow over a backward-facing step under controlled perturbation: laminar separation. J. Fluid Mech. 238, 73–96 (1992)

    Article  Google Scholar 

  4. Chun, K.B., Sung, H.J.: Control of turbulent separated flow over a backward-facing step by local forcing. Exp. Fluids 21, 417–426 (1996)

    Article  Google Scholar 

  5. Wengle, H., Huppertz, A., Bärwolff, G., Janke, G.: The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation. Eur. J. Mech. B-Fluids 20, 25–46 (2001)

    Article  MATH  Google Scholar 

  6. Smits, A.J.: A Visual Study of a Separation Bubble Proceeding of the 2Nd International Symposium on Flow Visualization, Germany (1980)

    Google Scholar 

  7. Hudy, L.M., Naguib, A., Humphreys, W.M.: Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys. Fluids 19, 024103 (2007)

    Article  MATH  Google Scholar 

  8. Huerre, P., Monkewitz, P.A.: Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151–168 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sigurdson, L.W.: The structure and control of a turbulent reattaching flow. J. Fluid Mech. 298, 139–165 (1995)

    Article  Google Scholar 

  10. Roos, F.W., Kegelman, J.T.: Control of coherent structures in reattaching laminar and turbulent shear layers. AIAA J. 24, 1956–1963 (1986)

    Article  Google Scholar 

  11. Ma, X., Geisler, R., Agocs, J., Schröder, A.: Investigation of coherent structures generated by acoustic tube in turbulent flow separation control. Exp. Fluids 56, 46 (2015)

    Article  Google Scholar 

  12. Ma, X., Geisler, R., Schröder, A.: Experimental investigation of three-dimensional vortex structures downstream of vortex generators over a backward-facing step. Flow Turbulence Combust 98, 389–415 (2017)

    Article  Google Scholar 

  13. Sujar-Garrido, P., Benard, N., Moreau, E., Bonnet, J.P.: Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step. Exp. Fluid 56, 70 (2015)

    Article  Google Scholar 

  14. Benard, N., Sujar-Garrido, P., Bonnet, J., Moreau, E.: Control of the coherent structures dynamics downstream of a backward-facing step by DBD plasma actuator. Int. J. Heat Fluid Fl. 61, 158–173 (2016)

    Article  Google Scholar 

  15. Kelly, R.E.: On the stability of an inviscid shear layer which is periodic in space and time. J. Fluid Mech. 27, 657–689 (1967)

    Article  MATH  Google Scholar 

  16. Zaman, K.B.M.Q., Hussain, A.K.M.F.: Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101(3), 449–491 (1980)

    Article  Google Scholar 

  17. Oster, D., Wygnanski, I.: The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91–130 (1982)

    Article  Google Scholar 

  18. Ho, C.M., Huang, L.S.: Subharmonic and vortex merging in mixing layers. J. Fluid Mech. 119, 443–473 (1982)

    Article  Google Scholar 

  19. Chao, Y.C., Han, J.M., Jeng, M.S.: A quantitative laser sheet image processing method for the study of the coherent structure of a circular jet flow. Exp. Fluids 9, 323–332 (1990)

    Article  Google Scholar 

  20. Husain, H.S., Hussain, A.K.M.F.: Experiments on subharmonic resonance in a shear layer. J. Fluid Mech. 304, 343–372 (1995)

    Article  Google Scholar 

  21. Kostas, J., Soria, J., Chong, M.S.: Particle image velocimetry measurements of a backward-facing step flow. Exp. Fluids 33, 838–853 (2002)

    Article  Google Scholar 

  22. Dejoan, A., Leschziner, M.A.: Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Int. J. Heat Fluid Fl. 25, 581–592 (2004)

    Article  Google Scholar 

  23. De Brederode, V., Bradshaw, P.: Influence of the side walls on the turbulent center-plane boundary layer in a square duct. J. Fluids Eng. 100, 91–96 (1978)

    Article  Google Scholar 

  24. Kähler, C. J., Sammler, B., Kompenhans, J.: Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 33, 736–742 (2002)

    Article  Google Scholar 

  25. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimetry: a Practicle Guide. Springer Press, Berlin (2007)

    Google Scholar 

  26. Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)

    Article  Google Scholar 

  27. Taylor, G.I.: Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421–444 (1935)

    Article  MATH  Google Scholar 

  28. Taylor, G.I.: Correlation measurements in a turbulent flow through a pipe. Proc. R. Soc. Lond. A 157, 537–546 (1936)

    Article  Google Scholar 

  29. Favre, A.J., Gaviglio, J.J., Dumas, R.: Space-time double correlations and spectra in a turbulent boundary layer. J. Fluid Mech. 2(4), 313–342 (1957)

    Article  MathSciNet  Google Scholar 

  30. Favre, A.J., Gaviglio, J.J., Dumas, R.: Structure of velocity space time correlations in a boundary layer. Phys. Fluids 10, S138 (1967)

    Article  Google Scholar 

  31. Schlichting, H.: Boundary-Layer Theory. McGRAW-HILL Press, New York (1979)

    MATH  Google Scholar 

  32. Hussain, A.K.M.F., Reynolds, W.C.: The mechanics of an organized wave in turbulent shear layer. J. Fluid Mech. 41(2), 241–258 (1970)

    Article  Google Scholar 

  33. Scarano, F., Riethmuller, M.L.: Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26, 513–523 (1999)

    Article  Google Scholar 

  34. Eaton, J.K., Johnston, J.P.: Low frequency unsteadyness of a reattaching turbulent shear layer. Turbulent Shear Flow 3. Springer-Verlag, Berlin Heidelberg (1982)

    Google Scholar 

  35. Driver, D.M., Seegmiller, H.L., Marvin, J.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25, 914–919 (1987)

    Article  Google Scholar 

  36. Hussain, A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  Google Scholar 

  37. Lumley, J.L.: The Structure of Inhomogeneous Turbulent Flow Proceeding of the Atmospheric Turbulence and Radio Wave Propagation, Moscow (1967)

    Google Scholar 

  38. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part 1: coherent structure. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  MATH  Google Scholar 

  39. Meyer, K.E., Pedersen, J.M., Özcan, O.: A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199–227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., Mockett, C., Thiele, F.: Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp. Fluids 43, 341–355 (2007)

    Article  Google Scholar 

  41. Schmid, P.J., Violato, D., Scarano, F.: Decomposition of time-resolved tomographic PIV. Exp. Fluids 52, 1567–1579 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. Daniel Schanz and Mr. Janos Agocs from the German Aerospace Center for valuable discussion and essential support during the wind tunnel test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Geisler, R. & Schröder, A. Experimental Investigation of Separated Shear Flow under Subharmonic Perturbations over a Backward-Facing Step. Flow Turbulence Combust 99, 71–91 (2017). https://doi.org/10.1007/s10494-017-9814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9814-1

Keywords

Navigation