Skip to main content
Log in

Large Eddy Simulations of CH4 Fire Plumes

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large eddy simulations of large-scale CH4 fire plumes (1.59-2.61 MW) with two different CFD packages, FireFOAM and FDS, are presented. It is investigated how the vorticity generation mechanism and puffing behavior of large-scale fire plumes differs from previously studied iso-thermal buoyant plumes of the same scale. In addition, the predictive capabilities of the turbulence and combustion models, currently used by the two CFD codes, to accurately capture the fire dynamics and the buoyancy-generated turbulence associated with large-scale fire plumes are evaluated. Results obtained with the two CFD codes, typically used for numerical simulations of fire safety applications, are also compared with respect to the average and rms velocities and temperatures, puffing frequencies, average flame heights and entrainment rates using experimental data and well-known correlations in literature. Furthermore, the importance of the applied reaction time scale model in combination with the Eddy Dissipation Model is examined. In particular, the influence of the considered mixing time scales in the predicted centerline temperatures is illustrated and used to explain the discrepancies between the two codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Meacham, B.J.: The evolution of performance based codes and fire safety design methods, National Institute of Standards and Technology NIST-GCR-98-761 (1998)

  2. Heskestad, G.: Dynamics of the fire plume. Phil. Trans. R. Soc. Lond. A 356, 2815–2833 (1998)

    Article  Google Scholar 

  3. McCaffrey, B.J.: Purely Buoyant Diffusion Flames: Some experimental results, NBSIR 79-1910 national bureau of standards (1979)

  4. Zukoski, E.E., Kubota, T., Cetegan, B.: Entrainment in fire plumes. Fire Saf. J. 3, 107–121 (1980)

    Article  Google Scholar 

  5. Cetegen, B.M., Zukoski, E.E., Kubota, T.: Entrainment and Flame Geometry of Fire Plumes, NBS-GCR 80-402, National Bureau of Standards, Gaithersburg, MD (1980)

  6. Thomas, P.H., Hinkley, P.L., Theobald, C.R., Simms, D.L.: Investigations into the Flow of Hot Gases in Roof Venting Fire Research Technical Paper. HMSO, London (1995)

    Google Scholar 

  7. Hamins, A., Yang, J.C., Kashiwagi, T.: An experimental investigation of the pulsation frequency of flames. Proc. Combust. Inst. 24, 1695–1702 (1992)

    Article  Google Scholar 

  8. Maragkos, G., Rauwoens, P., Wang, Y., Merci, B.: Large eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume. Flow Turbul. Combust. 90, 511–543 (2013)

    Article  Google Scholar 

  9. DesJardin, P.E., O’Hern, T.J., Tieszen, S.R.: Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids 16, 1866–1883 (2004)

    Article  MATH  Google Scholar 

  10. Maragkos, G., Merci, B.: Large Eddy Simulations of Large-scale CH4 Fire Plumes Proceedings of the 2nd IAFSS European Symposium of Fire Safety Science (2015)

  11. Wang, Y., Chatterjee, P., de Ris, J.L.: Large eddy simulation of fire plumes. Proc. Comb. Inst. 33, 2473–2480 (2011)

  12. Tieszen, S.R., O’Hern, T.J., Weckman, E.J., Blanchat, T.K.: Experimental study of the flow field in and around a one meter diameter methane fire. Combust. Flame 129, 378–391 (2002)

    Article  Google Scholar 

  13. Tieszen, S.R., O’Hern, T.J., Weckman, E.J., Schefer, R.W.: Experimental study of the effect of fuel mass flux on a 1-m diameter methane fire and comparison with a hydrogen fire. Combust. Flame 139, 126–141 (2004)

    Article  Google Scholar 

  14. Merci, B., Torero, J.L., Trouve, A.: IAFSS Working group on measurement and computation of fire phenomena. Fire Technol. 52, 607–610 (2016)

    Article  Google Scholar 

  15. Merci, B., Torero, J.L., Trouve, A.: Call for participation in the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena. Fire Saf. J. 82, 146–147 (2016)

    Article  Google Scholar 

  16. Ferraris, S., Wen, J.X., Dembele, S.: Large-eddy Simulation of a Large-scale Methane Pool Fire. Fire Safety Science 8, 963–974 (2005)

    Article  Google Scholar 

  17. Black, A.R.: Numerical Predictions and Experiment Results for a 1m Diameter Methane Fire, ASME International Mechanical Engineering Congress and Exposition, 429–435 (2005)

  18. DesJardin, P.E.: Modeling of conditional dissipation rate for flamelet models with application to large eddy simulation of fire plumes. Combust. Sci. Technol. 177, 1883–1916 (2005)

    Article  Google Scholar 

  19. Xin, Y., Filatyev, S.A., Biswas, K., Gore, J.P., Rehm, R.G., Baum, H.R.: Fire dynamics simulations of a one-meter diameter methane fire. Combust. Flame 153, 499–509 (2008)

    Article  Google Scholar 

  20. Pasdarshahri, H., Heidarinejad, G., Mazaheri, K.: Large eddy simulation on one-meter methane pool fire using one-equation sub-grid scale model, MCS 7, Chia Laguna, Cagliari, Sardinia, Italy, September 11–15 (2011)

  21. Hu, M., Yuen, A.C.Y., Cheung, S.C.P., Lappas, P., Chow, W.K., Yeoh, G.H.: Modelling of Temporal Combustion Behaviour in a Large-Scale Buoyant Pool Fire with Detailed Chemistry Consideration, International Congress on Modelling and Simulation, Adelaide, Australia (2013)

  22. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K.: Fire dynamics simulator technical reference guide volume 3: validation, NIST Special Publication 1018-3 Sixth Edition (2015)

  23. Jasak, H., Jemcov, A., Tuković, Z̆.: OpenFOAM: A C++ Library for Complex Physics Simulations, International Workshop on Coupled Methods in Numerical Dynamics IUC, Dubrovnik, Croatia September 19th-21st (2007)

  24. Chen, Z., Wen, J., Xu, B., Dembele, S.: Large eddy simulation of fire dynamics with the improved eddy dissipation concept. Fire Safety Science 10, 795–808 (2011)

    Article  Google Scholar 

  25. Ren, N., Wang, Y., Vilfayeau, S., Truvé, A.: Large eddy simulation of turbulent wall fires, 8th U.S. National Combustion Meeting Paper 070FR-0056 (2013)

  26. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K.: Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical model, NIST Special Publication 1018 Sixth Edition (2014)

  27. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  28. Lilly, D.K.: A proposed modification of the Germano subgrid scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  29. Deardorff, J.W.: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972)

    Article  Google Scholar 

  30. Pope, S.B.: Turbulent Flows, Cambridge University Press (2000)

  31. Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Comb. Inst. 16, 719–729 (1976)

    Article  Google Scholar 

  32. McDermott, R., McGrattan, K., Floyd, J.: A simple reaction time scale for Under-Resolved fire dynamics. Fire Safety Science 10, 809–820 (2011)

    Article  Google Scholar 

  33. Fureby, C., Tabor, G.: Mathematical and physical constrains on Large-Eddy simulations. Theor. Comput. Fluid Dyn. 9, 85–102 (1997)

    Article  MATH  Google Scholar 

  34. Grosshandler, W.L.: RADCAL: A Narrow-Band model for radiation calculations in a combustion environment, NIST technical note 1402 (1993)

  35. Hamins, A., Kashiwagi, T., Buch, R. In: Totten, G.E., Reichel, J. (eds.) : Characteristics of Pool Fire Burning, Fire Resistance of Industrial Fluids ASTM STP 1284. American society for testing and materials, Philadelphia (1996)

  36. Drysdale, D.: An Introduction to Fire Dynamics, 3rd edn. Wiley, England (2011)

    Book  Google Scholar 

  37. McGrattan, K., Floyd, J., Forney, G., Baum, H.: Improved radiation and combustion routines for a large eddy simulation fire model. Fire Safety Science 7, 827–838 (2003)

    Article  Google Scholar 

  38. NRC: Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, NUREG-1824, U.S. Nuclear Regulatory Commission, Washington D.C (2007)

  39. Chung, W., Devaud, C.B.: Buoyancy-corrected k-models and large eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Methods Fluids 58, 57–89 (2008)

    Article  MATH  Google Scholar 

  40. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 1–24 (2004)

    Article  MathSciNet  Google Scholar 

  41. Celik, I., Klein, M., Janicka, J.: Assessment measures for engineering LES applications. J. Fluids Eng. 031102, 131 (2009)

    Google Scholar 

  42. Heskestad, G.: Engineering relations for fire plumes. Fire Saf. J. 7, 25–32 (1984)

    Article  Google Scholar 

  43. Zukoski, E.E. In: Cox, G. (ed.) : Properties of Fire Plumes, Combustion Fundamentals of Fire, pp 101–219. Academic Press, London (1983)

  44. Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993)

    Article  Google Scholar 

  45. Pagni, P.J.: Some unanswered questions in fluid mechanics. App. Mech. Rev. 43, 153–170 (1990)

    Article  MathSciNet  Google Scholar 

  46. Heskestad, G.: Luminous heights of turbulent diffusion flames. Fire Saf. J. 5, 109–114 (1983)

    Article  Google Scholar 

  47. Heskestad, G.: Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames. Proc. Comb Inst. 18, 951–960 (1981)

    Article  Google Scholar 

  48. Zukoski, E.E.: Convective Flows Associated with Room Fires, Semi Annual Progress Report, National Science Foundation Grant No GI 31892 X1, Institute of Technology, Pasadena, CA (1975)

  49. Karlsson, B., Quintiere, J.G.: Enclosure fire dynamics CRC press (2000)

  50. Tamanini, F.: Reaction rates, air entrainment and radiation in turbulent fire plumes. Combust. Flame 30, 85–101 (1977)

    Article  Google Scholar 

  51. Quintiere, J.G., Grove, B.S.: A unified analysis for fire plumes. Proc. Comb. Inst. 27, 2757–2766 (1998)

    Article  Google Scholar 

  52. Delichatsios, M.A., Orloff, L.: Entrainment measurements in turbulent buoyant jet flames and implications for modeling. Proc. Comb. Inst. 20, 267–375 (1984)

    Google Scholar 

  53. Heskestad, G.: Fire plume air entrainment according to two competing assumptions. Proc. Comb. Inst. 21, 111–120 (1986)

    Article  Google Scholar 

  54. McCaffrey, B., Cox, G.: Entrainment and heat flux of buoyant diffusion flames, Report NBSIR 82-2473 National Bureau of Standards (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maragkos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maragkos, G., Merci, B. Large Eddy Simulations of CH4 Fire Plumes. Flow Turbulence Combust 99, 239–278 (2017). https://doi.org/10.1007/s10494-017-9803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9803-4

Keywords

Navigation