Skip to main content
Log in

Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with Re D = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buseck, P.R., Pósfai, M.: Airborne minerals and related aerosol particles: Effects on climate and the environment. Proc. Natl. Acad. Sci. U. S. A. 96(7), 3372–3379 (1999)

    Article  Google Scholar 

  2. Grahame, T.J., Klemm, R., Schlesinger, R.B.: Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manage. Assoc. 64(6), 620–660 (2014)

    Article  Google Scholar 

  3. Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K. H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C.: Carbonaceous aerosols in the air masses transported from indo China to Taiwan Long-term observation at Mt. Lulin. Atmos. Environ. 89, 507–516 (2014)

    Article  Google Scholar 

  4. Menon, S., Hansen, J., Nazarenko, L., Luo, Y.: Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002)

    Article  Google Scholar 

  5. Wierzbicka, A., Nilsson, P.T., Rissler, J., Sallsten, G., Xu, Y., Pagels, J.H., Albin, M., Österberg, K., Strandberg, B., Eriksson, A., Bohgard, M., Bergemalm-Rynell, K., Gudmundsson, A.: Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies. Atmos. Environ. 86, 212–219 (2014)

    Article  Google Scholar 

  6. Wang, H.: Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33, 41–67 (2011)

    Article  Google Scholar 

  7. D’Anna, A.: Combustion-formed nanoparticles. Proc. Combust. Inst. 32, 593–613 (2009)

    Article  Google Scholar 

  8. Zhao, B., Yang, Z., Johnston, M.V., Wang, H., Wexler, A.S., Balthasar, M., Kraft, M.: Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame. Combust. Flame 133, 173–188 (2003)

    Article  Google Scholar 

  9. Zhao, B., Yang, Z., Wang, J., Johnston, M.V., Wang, H.: Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer. Aerosol Sci. Technol. 37, 611–620 (2003)

    Article  Google Scholar 

  10. Zhao, B., Yang, Z., Li, Z., Johnston, M.V., Wang, H.: Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature. Proc. Combust. Inst. 30, 1441–1448 (2005)

    Article  Google Scholar 

  11. Abid, A.D., Heinz, N., Tolmachoff, E.D., Phares, D.J., Campbell, C.S., Wang, H.: On evolution of particle size distribution functions of incipient soot in premixed ethylene-oxygen-argon flames. Combust. Flame 154, 775–788 (2008)

    Article  Google Scholar 

  12. Zhao, B., Uchikawa, K., Wang, H.: A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy. Proc. Combust. Inst. 31, 851–860 (2007)

    Article  Google Scholar 

  13. Maricq, M.M., Harris, S.J., Szente, J.J.: Soot size distributions in rich premixed ethylene flames. Combust. Flame 132, 328–342 (2003)

    Article  Google Scholar 

  14. Maricq, M.M.: A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combust. Flame 144, 730–743 (2006)

    Article  Google Scholar 

  15. Maricq, M.M.: Size and charge of soot particles in rich premixed ethylene flames. Combust. Flame 137, 340–350 (2004)

    Article  Google Scholar 

  16. Kent, J.H., Honnery, D.: Soot and mixture fraction in turbulent diffusion flames. Combust. Sci. Technol. 54, 383–398 (1987)

    Article  Google Scholar 

  17. D’Anna, A., Commodo, M., Violi, S., Allouis, C., Kent, J.: Nano organic carbon and soot in turbulent non-premixed ethylene flames. Proc. Combust. Inst. 31, 621–629 (2007)

    Article  Google Scholar 

  18. Hu, B., Yang, B., Koylu, U.O.: Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame. Combust. Flame 134, 93–106 (2003)

    Article  Google Scholar 

  19. Yang, B., Koylu, U.O.: Detailed soot field in a turbulent non-premixed ethylene/air flame from laser scattering and extinction experiments. Combust. Flame 141, 55–65 (2005)

    Article  Google Scholar 

  20. Köhler, M., Geigle, K.P., Meier, W., Crosland, B.M., Thomson, K.A., Smallwood, G.J.: Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl. Phys. B Lasers Opt. 104, 409–425 (2011)

    Article  Google Scholar 

  21. Kȯhler, M., Geigle, K.-P., Blacha, T., Gerlinger, P., Meier, W.: Experimental characterization and numerical simulation of a sooting lifted turbulent jet diffusion flame. Combust. Flame 159, 2620–2635 (2012)

    Article  Google Scholar 

  22. Mahmoud, S.M., Nathan, G.J., Medwell, P.R., Dally, B.B., Alwahabi, Z.T.: Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proc. Combust. Inst. 35, 1931–1938 (2015)

    Article  Google Scholar 

  23. Qamar, N.H., Alwahabi, Z.T., Chan, Q.N., Nathan, G.J., Roekaerts, D., King, K.D.: Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust. Flame 156, 1339–1347 (2009)

    Article  Google Scholar 

  24. Zhang, J., Shaddix, C.R., Schefer, R.W.: Design of ”model-friendly” turbulent non-premixed jet burners for C2+ hydrocarbon fuels. Rev. Sci. Instrum. 82, 074101 (2011)

    Article  Google Scholar 

  25. Snelling, D.R., Link, O., Thomson, K.A., Smallwood, G.J.: Measurement of soot morphology by integrated LII and elastic light scattering. Appl. Phys. B Lasers Opt. 104, 385–397 (2011)

    Article  Google Scholar 

  26. Schulz, C., Kock, B.F., Hofmann, M., Michelsen, H.A., Will, S., Bougie, B., Suntz, R., Smallwood, G.: Laser-induced incandescence: recent trends and current questions. Appl. Phys. B Lasers Opt. 83, 333–354 (2006)

    Article  Google Scholar 

  27. Stirn, R., Gonzalez Baquet, T., Kanjarkar, S., Meier, W., Geigle, K.P., Grotheer, H.H., Wahl, C., Aigner, M.: Comparison of particle size measurements with Laser-Induced incandescence, mass spectroscopy, and scanning mobility particle sizing in a laminar premixed Ethylene/Air flame. Combust. Sci. Technol. 181, 329–349 (2009)

    Article  Google Scholar 

  28. Netzell, K., Lehtiniemi, H., Mauss, F.: Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method. Proc. Combust. Inst. 31, 667–674 (2007)

    Article  Google Scholar 

  29. Abdelgadir, A., Lucchesi, M., Attili, A., Bisetti, F.: Investigation of soot morphology and particle size distribution in a turbulent nonpremixed flame via Monte Carlo simulations. In: Proc. Eur. Combust. Meet., Budapest, Hungary (2015)

Download references

Acknowledgments

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Boyette.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyette, W., Chowdhury, S. & Roberts, W. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame. Flow Turbulence Combust 98, 1173–1186 (2017). https://doi.org/10.1007/s10494-017-9802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9802-5

Keywords

Navigation