Skip to main content
Log in

RETRACTED ARTICLE: Evaluation of the Filtered Noise Turbulent Inflow Generation Method

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

This article was retracted on 16 February 2022

This article has been updated

Abstract

Flows around buildings and in urban areas have the ability to exchange mass and momentum through mixing layers. The complex dynamical phenomena arising in mixing layers can be studied using Large Eddy Simulation (LES). As mixing layers depend on the turbulence conditions upstream of the buildings or urban areas, appropriate turbulent inlet conditions have to be provided to a simulation. Due to the high efficiency and level of control, the filtered noise inflow method was selected. The control over the Reynolds stresses as well as nine length scales make this method suitable to replicate conditions measured in experiments. In this paper, a formal method to obtain the filter coefficients is presented. This is achieved by relating the spatial filtering to a Finite Impulse Response (FIR) filter and the temporal filtering to an Autoregressive (AR) model. Three closed-form solutions for the spatial filter coefficients are presented having a Gaussian, double-exponential and exponential correlation function. By means of an LES simulation of a turbulent wall-bounded flow, the input-output behaviour is investigated. It was found that a combination of a Gaussian filter with length scales that increase with increasing wall distance result in the fastest downstream development of the artificial turbulence and the smallest loss of turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

Abbreviations

ABL:

Atmospheric Boundary Layer

ACF:

Autocorrelation Function

ARMA:

Autoregressive Moving-Average

AR:

Autoregressive

BC:

Boundary Condition

CFD:

Computational Fluid Dynamics

DNS:

Direct Numerical Simulation

FFT:

Fast Fourier Transform

FIR:

Finite Impulse Response

HPC:

High Performance Computing

LES:

Large Eddy Simulation

MA:

Moving-Average

PIV:

Particle Image Velocimetry

PSD:

Power Spectral Density

RANS:

Reynolds-Averaged Navier-Stokes

TKE:

Turbulent Kinetic Energy

TVD:

Total Variation Diminishing

References

  1. Phuc, P., Nozu, T., Kikuchi, H., Hibi, K., Tamura, Y.: A numerical study on wind pressure on a building with a setback using large eddy simulation. In: 6th International Symposium on Computational Wind Engineering, Hamburg (2014)

  2. Moeng, C.H.: A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence (1984). doi:10.1175/1520-0469(1984)041〈2052:ALESMF〉2.0.CO;2

  3. Sullivan, P.E., Mcwilliams, J.C., Moeng, Ch.: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Lay. Meteorol., 247–276 (1980)

  4. Beare, R.J., Macvean, M.K., Holtslag, AaM, Cuxart, J., Esau, I., Golaz, J.C., Jimenez, Ma, Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T.S., Lundquist, J.K., McCabe, A., Moene, A.F., Noh, Y., Raasch, S., Sullivan, P.: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteorol. 118(2), 247–272 (2006). doi:10.1007/s10546-004-2820-6

    Article  Google Scholar 

  5. Liu, C., Barth, M.: Large-eddy simulation of flow and scalar transport in a modeled street canyon. J. Appl. Meteorol. 1999, 660–673 (2002). http://journals.ametsoc.org/doi/abs/10.1175/1520-0450(2002)041⟨0660:LESOFA⟩2.0.CO;2

    Article  Google Scholar 

  6. Cui, Z., Cai, X., Baker, C.J.: Large-eddy simulation of turbulent flow in a street canyon. Q. J. R. Meteorol. Soc. 130(599), 1373–1394 (2004). doi:10.1256/qj.02.150. http://doi.wiley.com/10.1256/qj.02.150

    Article  Google Scholar 

  7. Letzel, M.O., Krane, M., Raasch, S.: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 42(38), 8770–8784 (2008). doi:10.1016/j.atmosenv.2008.08.001. http://linkinghub.elsevier.com/retrieve/pii/S1352231008007036

    Article  Google Scholar 

  8. Cheng, W.C., Liu, C.H.: Large-Eddy Simulation of Flow and Pollutant Transports in and Above Two-Dimensional Idealized Street Canyons. Bound.-Layer Meteorol. 139(3), 411–437 (2011). doi:10.1007/s10546-010-9584-y. http://www.springerlink.com/index/10.1007/s10546-010-9584-y

    Article  Google Scholar 

  9. Cheng, Y., Lien, F.S., Yee, E., Sinclair, R.: A comparison of large Eddy simulations with a standard k-e Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind Eng. Ind. Aerodyn. 91(11), 1301–1328 (2003). doi:10.1016/j.jweia.2003.08.001

    Article  Google Scholar 

  10. Xie, Z., Castro, I.P.: LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow, Turbulence and Combustion 76, 291–312 (2006). doi:10.1007/s10494-006-9018-6

    Article  MATH  Google Scholar 

  11. Moonen, P., Dorer, V., Carmeliet, J.: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment. J. Wind Eng. Ind. Aerodyn. 104-106, 389–396 (2012). doi:10.1016/j.jweia.2012.01.007

    Article  Google Scholar 

  12. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 258, 233–258 (1998). http://www.sciencedirect.com/science/article/pii/S002199919895882X

    Article  MathSciNet  Google Scholar 

  13. Spalart, P.R., Leonard, A.: Direct numerical simulation of equilibrium turbulent boundary layers. Turbulent Shear Flows 5, 234–252 (1987)

    Article  Google Scholar 

  14. Baba-Ahmadi M., Tabor, G.: Inlet conditions for LES using mapping and feedback control. Comput. Fluids 38(6), 1299–1311 (2009). doi:10.1016/j.compfluid.2009.02.001. http://linkinghub.elsevier.com/retrieve/pii/S004579300900022X

    Article  MATH  Google Scholar 

  15. Lee, S., Lele, S.K., Moin, P.: Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Physics of Fluids A: Fluid Dynamics 4(7), 1521 (1992). doi:10.1063/1.858425. http://link.aip.org/link/PFADEB/v4/i7/p1521/s1&Agg=doi

  16. Smirnov, a., Shi, S., Celik, I.: Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling. J. Fluids Eng. 123(2), 359 (2001). doi:10.1115/1.1369598. http://link.aip.org/link/JFEGA4/v123/i2/p359/s1&Agg=doi

    Article  Google Scholar 

  17. Sergent, E.: Vers une méthodologie de couplage entre la Simulation des Grandes Echelles et les modèles statistiques. PhD thesis (2002)

  18. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27(4), 585–593 (2006). doi:10.1016/j.ijheatfluidflow.2006.02.006. http://linkinghub.elsevier.com/retrieve/pii/S0142727X06000282

    Article  Google Scholar 

  19. Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Assessment of the vortex method for Large Eddy Simulation inlet conditions. Progress in Computational Fluid Dynamics 6, 58–67 (2006). doi:10.1504/PCFD.2006.009483

    Article  MathSciNet  MATH  Google Scholar 

  20. Kornev, N., Hassel, E.: Synthesis of homogeneous anisotropic divergence-free turbulent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids 19(6), 068,101 (2007b). doi:10.1063/1.2738607. http://link.aip.org/link/PHFLE6/v19/i6/p068101/s1&Agg=doi

    Article  MATH  Google Scholar 

  21. Kornev, N., Hassel, E.: Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Communications in Numerical Methodes in Engineering 23, 35–43 (2007a)

    Article  MathSciNet  Google Scholar 

  22. Poletto, R., Craft, T., Revell, A.: A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for les. Flow, Turbulence and Combustion 91(3), 519–539 (2013). doi:10.1007/s10494-013-9488-2

    Article  Google Scholar 

  23. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003). doi:10.1016/S0021-9991(03)00090-1. http://linkinghub.elsevier.com/retrieve/pii/S0021999103000901

    Article  MATH  Google Scholar 

  24. di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18(2), 025,107 (2006). doi:10.1063/1.2130744. http://scitation.aip.org/content/aip/journal/pof2/18/2/10.1063/1.2130744

    Article  Google Scholar 

  25. Xie, Z.T., Castro, I.P.: Efficient Generation of Inflow Conditions for Large Eddy Simulation of Street-Scale Flows. Flow, Turbulence and Combustion 81(3), 449–470 (2008). doi:10.1007/s10494-008-9151-5. http://www.springerlink.com/index/10.1007/s10494-008-9151-5

    Article  MATH  Google Scholar 

  26. Kim, Y., Castro, I.P., Xie, Z.T.: Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers. Comput. Fluids 84, 56–68 (2013). doi:10.1016/j.compfluid.2013.06.001. http://linkinghub.elsevier.com/retrieve/pii/S0045793013002132

    Article  MathSciNet  MATH  Google Scholar 

  27. Xuan, Y., Iizuka, S.: Effects of imposing the continuity condition on artificially generated inflow turbulence for LES. In: 6th international conference on Computational Wind Engineering, 2 (2013)

  28. Gousseau, P., Blocken, B., van Heijst, G.J.F.: Large-Eddy Simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics. Environ. Pollut. 167, 47–57 (2012). (Barking, Essex : 1987), doi:10.1016/j.envpol.2012.03.021, http://www.ncbi.nlm.nih.gov/pubmed/22534159

    Article  Google Scholar 

  29. Boppana, V.B.L., Xie, Z.T., Castro, I.P.: Large-Eddy Simulation of Heat Transfer from a Single Cube Mounted on a Very Rough Wall. Bound.-Layer Meteorol. (2012). doi:10.1007/s10546-012-9793-7. http://www.springerlink.com/index/10.1007/s10546-012-9793-7

    Article  Google Scholar 

  30. Moonen, P., Gromke, C., Dorer, V.: Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting. Atmos. Environ. 75, 66–76 (2013). doi:10.1016/j.atmosenv.2013.04.016. http://linkinghub.elsevier.com/retrieve/pii/S1352231013002616

    Article  Google Scholar 

  31. Immer, M.: Time-resolved measurement and simulation of local scale turbulent urban flow. ETH Zurich, (2016). doi:10.3929/ethz-a-010657618

  32. Immer, M., Allegrini, J., Carmeliet, J.: Time-resolved and time-averaged stereo-piv measurements of a unit-ratio cavity. Exp. Fluids 57(6), 101 (2016). doi:10.1007/s00348-016-2186-9

    Article  Google Scholar 

  33. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Communication-optimal Parallel and Sequential Cholesky Decomposition. CoRR p 29, doi:10.1137/090760969, arXiv:0902.2537,0902.2537 (2009)

  34. Veloudis, I., Yang, Z., McGuirk, J.J., Page, G.J., Spencer, a.: Novel Implementation and Assessment of a Digital Filter Based Approach for the Generation of LES Inlet Conditions. Flow, Turbulence and Combustion 79(1), 1–24 (2007). doi:10.1007/s10494-006-9058-y. http://link.springer.com/10.1007/s10494-006-9058-y

    Article  MATH  Google Scholar 

  35. Kempf, A.M., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012). doi:10.1016/j.compfluid.2012.02.027. http://linkinghub.elsevier.com/retrieve/pii/S0045793012000825

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Etten, W.: Introduction to Random Signals and Noise. Wiley (2006)

  37. Girod, B., Rabenstein, R., Stenger, A.: Signals and systems. Wiley (2001)

  38. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control. Wiley. (2008). doi:10.1002/9781118619193

  39. Hamilton, J.: Time Series Analysis. Princeton University Press (1994)

  40. Kundu, P., Cohen, I.: Fluid Mechanics. Elsevier Science (2001)

  41. Immer, M., Vonlanthen, M. Eth-oftools-2.3.x version 1.0., https://github.com/ETH-BuildingPhysics/ETH-OFTools-2.3.X, accessed: 2015-10-1 (2015)

  42. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975). doi:10.1016/0021-9991(75)90093-5

    Article  MATH  Google Scholar 

  43. Yoshizawa, A., Horiuti, K.: A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows (1985). doi:10.1143/JPSJ.54.2834

  44. OpenFOAM Foundation. OpenFOAM 2.3.0. http://www.openfoam.org/, accessed: 2015-09-30 (2015)

  45. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620 (1998). doi:10.1063/1.168744. http://link.aip.org/link/CPHYE2/v12/i6/p620/s1&Agg=doi

  46. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986). doi:10.1016/0021-9991(86)90099-9. http://www.sciencedirect.com/science/article/pii/0021999186900999

    Article  MathSciNet  MATH  Google Scholar 

  47. Jasak, H., Weller, H., Gosman, A.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31(2), 431–449 (1999). doi:10.1002/(SICI)1097-0363(19990930)31:2⟨431::AID-FLD884⟩3.0.CO;2-T, http://powerlab.fsb.hr/ped/kturbo/Openfoam/papers/GammaPaper.pdf, doi:10.1002/%28SICI%291097-0363%2819990930%2931%3A2%3C431%3A%3AAID-FLD884%3E3.0.CO%3B2-T

    Article  Google Scholar 

  48. Hirsch, C.: Numerical Computation of Internal and External Flows - Fundamentals of Computational Fluid Dynamics, 2nd Edn. Elsevier (2007)

  49. Sweby, P.K.: High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984). doi:10.1137/0721062

    Article  MathSciNet  MATH  Google Scholar 

  50. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005). doi:10.1017/S0022112004002812. http://www.journals.cambridge.org/abstract_S0022112004002812

    Article  MathSciNet  MATH  Google Scholar 

  51. Kravchenko, A.A., Moin, P., Moser, R.: Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys. 423(2), 412–423 (1996). doi:10.1006/jcph.1996.0184. http://www.sciencedirect.com/science/article/pii/S0021999196901849

    Article  MATH  Google Scholar 

  52. Moser, R., Kim, J., Mansour, N.: Direct numerical simulation of turbulent channel flow up to Re= 590. Phys. Fluids 11(4), 11–13 (1999). http://link.aip.org/link/?PHFLE6/11/943/1

    Article  Google Scholar 

  53. Adrian, R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19(4), 041,301 (2007). doi:10.1063/1.2717527. http://scitation.aip.org/content/aip/journal/pof2/19/4/10.1063/1.2717527

    Article  MATH  Google Scholar 

  54. Kline, S.J., Reynolds, W.C., Schraubt, Fa., Runstadlers, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30(4), 741–773 (1967). doi:10.1017/S0022112067001740

    Article  Google Scholar 

  55. Okaze, T., Mochida, A.: Generation of artificial inflow turbulence including scalar fluctuation for LES based on Cholesky decomposition. In: ICUC9 - 9th International Conference on Urban Climate jointly with 12th Symposium on the Urban Environment, July (2015)

  56. Dietzel, D., Messig, D., Piscaglia, F., Montorfano, A., Olenik, G., Stein, O.T., Kronenburg, A., Onorati, A., Hasse, C.: Evaluation of scale resolving turbulence generation methods for Large Eddy Simulation of turbulent flows. Comput. Fluids 93, 116–128 (2014). doi:10.1016/j.compfluid.2014.01.013. http://linkinghub.elsevier.com/retrieve/pii/S0045793014000206

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We want to thank for the essential contribution by Marc Immer, who obtained the doctoral degree at ETH Zurich (DISS. ETH NO. 23208). We also thank ETH Zurich for their support by means of the Hartmann Müller-Fonds on grant ETH-32 11-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Allegrini.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegrini, J., Carmeliet, J. RETRACTED ARTICLE: Evaluation of the Filtered Noise Turbulent Inflow Generation Method. Flow Turbulence Combust 98, 1087–1115 (2017). https://doi.org/10.1007/s10494-016-9798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9798-2

Keywords

Navigation