Skip to main content
Log in

Effect of Flow Structures on Turbulence Statistics of Taylor-Couette Flow in the Torque Transition State

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations of Taylor-Couette flow from R e= 8000 to 25000 have been conducted to investigate changes of turbulence statistics in the transition of the Reynolds number dependency of the mean torque near R e= 10000. The velocity fluctuations are decomposed into the contributions of the Taylor vortex and remaining turbulent fluctuations. Significant Reynolds number dependencies of these components are observed in the radial profiles of the Reynolds stress and the transmission of the mean torque. The contributions of Taylor vortex and turbulent components in the net amount of mean torque are evaluated. The Taylor vortex component is overtaken by the turbulent counterpart around R e= 15000 when they are defined as the azimuthally averaged component and the remnants. The results show that the torque transition can be explained by the competition between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wendt, F.: Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern. Arch. Appl. Mech. 4(6), 577–595 (1933)

    Google Scholar 

  2. Doering, C.R., Constantin, P.: Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69(11), 1648 (1992)

    Article  Google Scholar 

  3. Lathrop, D.P., Fineberg, J., Swinney, H.L.: Transition to shear–driven turbulence in Couette–Taylor flow. Phys. Rev. A 46(10), 6390 (1992)

    Article  Google Scholar 

  4. Lathrop, D.P., Fineberg, J., Swinney, H.L.: Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 68(10), 1515 (1992)

    Article  Google Scholar 

  5. Lewis, G.S., Swinney, H.L.: Velocity structure functions, scaling, and transitions in high–Reynolds–number Couette-Taylor flow. Phys. Rev. E 59(5), 5457 (1999)

    Article  Google Scholar 

  6. Eckhardt, B., Grossmann, S., Lohse, D.: Scaling of global momentum transport in Taylor–Couette and pipe flow. Eur. Phys. J. B-Condens. Matter Complex Syst. 18 (3), 541–544 (2000)

    Article  Google Scholar 

  7. Eckhardt, B., Grossmann, S., Lohse, D.: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221–250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Gils, D.P., Huisman, S.G., Bruggert, G.W., Sun, C., Lohse, D.: Torque scaling in turbulent Taylor–Couette flow with co–and counterrotating cylinders. Phys. Rev. Lett. 106(2), 024–502 (2011)

    Article  Google Scholar 

  9. Grossmann, S., Lohse, D., Sun, C.: High Reynolds number Taylor–Couette turbulence. Ann. Rev. Fluid Mech. 48, 53–80 (2016)

    Article  MATH  Google Scholar 

  10. Dong, S.: Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, W., Tanahashi, M., Miyauchi, T.: Direct numerical simulation of turbulent Taylor-Couette flow with high Reynolds number. In: Advances in Turbulence XI, pp 215–217. Springer (2007)

  12. Pirro, D., Quadrio, M.: Direct numerical simulation of turbulent Taylor–Couette flow. Eur. J. Mech.-B/Fluids 27(5), 552–566 (2008)

    Article  MATH  Google Scholar 

  13. Fukushima, N., Fushimi, T., Shimura, M., Tanahashi, M., Miyauchi, T.: Dynamics of large–and small–scale vortical structures in turbulent Taylor–Couette flow. Proceedings Turbulent Shear Flow Phenomena 7 (2011)

  14. Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R., Grossmann, S., Lohse, D.: Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26(1), 015–114 (2014)

    Article  Google Scholar 

  15. Marcus, P.S.: Simulation of Taylor–Couette flow. part 1. numerical methods and comparison with experiment. J. Fluid Mech. 146, 45–64 (1984)

    Article  MATH  Google Scholar 

  16. Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. Royal Soc. London. Ser. A Contain. Papers Math. Phys. Charact. 223, 289–343 (1923)

    Article  MATH  Google Scholar 

  17. Burkhalter, J., Koschmieder, E.: Steady supercritical taylor vortices after sudden starts. Phys. Fluids 17(11), 1929–1935 (1974)

    Article  Google Scholar 

  18. Tanahashi, M., Kang, S.J., Miyamoto, T., Shiokawa, S., Miyauchi, T.: Scaling law of fine scale eddies in turbulent channel flows up to R e τ =800. Int. J. Heat Fluid Flow 25(3), 331–340 (2004)

    Article  Google Scholar 

  19. Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20(10), 101–511 (2008)

    Article  MATH  Google Scholar 

  20. Bilson, M., Bremhorst, K.: Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 2(R1), 2–2 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Huisman, S.G., Scharnowski, S., Cierpka, C., Kähler, C. J., Lohse, D., Sun, C.: Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett 110(26), 264–501 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Grant-in-Aid for Scientific Research (S) (No.23226005) of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Osawa.

Appendix: A Relation between the Torque Transmission and the Net Mean Torque

Appendix: A Relation between the Torque Transmission and the Net Mean Torque

A relation between the torque transmission in Eq. 3 and the net mean torque in Eq. 4 can be derived in the following steps. The local force in the azimuthal direction driving infinitesimal volume of fluid is written as Eqs. 9 and 10 when they are averaged in azimuthal and axial directions and in time.

$$\begin{array}{@{}rcl@{}} \frac{D\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{Dt} &=& \frac{1}{r^{2}}\frac{\partial}{\partial r} \left( r^{2}\langle {\langle {u_{r}u_{\theta}} \rangle_{\theta}} \rangle_{z}\right) \end{array} $$
(9)
$$\begin{array}{@{}rcl@{}} &=& \frac{1}{Re}\frac{1}{r^{2}}\frac{\partial}{\partial r} \left( r^{3}\frac{\partial}{\partial r}\frac{\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{r}\right) \end{array} $$
(10)

〈〈u r u θ θ z in the right hand side of Eq. 9 is equal to R r θ \(=\langle \langle {u_{r}^{\prime }u_{\theta }^{\prime }\rangle _{\theta }\rangle }z\) since 〈〈u r θ z=0. Equations 9 and 10 give the expression of the Reynolds stress and the viscous terms for the driving force as follows,

$$\begin{array}{@{}rcl@{}} \langle {\langle {u_{r}^{\prime}u_{\theta}^{\prime}} \rangle_{\theta}} \rangle_{z} &=& {\int}_{r_{\mathrm{i}}}^{r} \frac{D\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{Dt} dr -2{\int}_{r_{\mathrm{i}}}^{r} \frac{\langle {\langle {u_{r}^{\prime}u_{\theta}^{\prime}} \rangle_{\theta}} \rangle_{z}}{r} dr \end{array} $$
(11)
$$\begin{array}{@{}rcl@{}} \frac{1}{Re}r\frac{\partial}{\partial r}\frac{\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{r} &=& {\int}_{r_{\mathrm{i}}}^{r} \frac{D\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{Dt} dr + \frac{1}{Re} r_{\mathrm{i}} \frac{\partial}{\partial r}\frac{\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{r}\bigg|_{r=r_{\mathrm{i}}} -2 \frac{1}{Re} {\int}_{r_{\mathrm{i}}}^{r} \frac{\partial}{\partial r}\frac{\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{r} dr . \end{array} $$
(12)

Then Eq. 13 can be derived by substituting Eqs. 11 and 12 into Eq. 3

$$ \left( 1-\frac{r^{2}}{r_{\mathrm{i}}^{2}} \right) G(r) = -2r^{2} {\int}_{r_{\mathrm{i}}}^{r} \frac{1}{r^{3}} \left( r^{2}\langle {\langle {u_{r}^{\prime}u_{\theta}^{\prime}} \rangle_{\theta}} \rangle_{z} - \frac{1}{Re}r^{3}\frac{\partial}{\partial r}\frac{\langle {\langle {u_{\theta}} \rangle_{\theta}} \rangle_{z}}{r} \right) dr . $$
(13)

Here the second term of the right hand side in Eq. 12 can be transformed to \(r^{2}/{r^{2}_{i}}G(r)\) using Eq. 3 at r = r i . By considering r = r o in Eq. 13, a whole domain can be taken in account and Eq. 4 is derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osawa, K., Naka, Y., Fukushima, N. et al. Effect of Flow Structures on Turbulence Statistics of Taylor-Couette Flow in the Torque Transition State. Flow Turbulence Combust 97, 973–986 (2016). https://doi.org/10.1007/s10494-016-9770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9770-1

Keywords

Navigation