Skip to main content
Log in

Theoretical Analysis of Thermal Conduction Effect on Frequency Response of a Perturbed Vaporizing Spherical Droplet

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this work, model results of the effect of thermal conduction on frequency response of a perturbed vaporizing spherical droplet are presented and discussed. The linear analysis of dynamic response to small acoustics oscillations are performed on the basis of the Rayleigh criterion for a mean spherical droplet representing the spray of repetitively injected droplets in the combustion chamber. Curves related to different heat exchange coefficients are presented for the frequency response of the vaporization rate. The not-yet-solved case of imposed temperature at the centre of the spherical droplet (isothermal centre regime or isothermal injection regime) is taking into account here. The case is now compared to the case where the feeding process at the centre of the spherical droplet is assumed adiabatic (adiabatic centre regime or adiabatic injection regime). Each feeding case here considered represents a specific boundary condition controlling the whole injection process. The temperature field perturbation inside the droplet is then examined. Comparisons are also made between the adiabatic and the isothermal injection regimes and differences are analysed. It is shown that the characteristic times of the evaporation process, the period of the harmonic perturbation and a particular parameter depending on fuel physical properties do intervene strongly in the behaviour of the vaporizing droplet. Especially, in the isothermal injection regime, due to this particular parameter, high and non-linear frequency responses may appear in the process. The results of this theoretical study may be applied in establishments of combustion systems stability limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Culick, F.: Overview of combustion instabilities in liquid-propellant rocket engines. In: Culick, F., Yang, V. (eds.) Liquid Rocket Engine Combustion Instability, vol. 169, pp 3–37. AIAA (1995)

  2. Bhatia, R., Sirignano, W.A.: One-dimensional analysis of liquid-fuel combustion instability. J. Propulsion Power 7(6), 953–961 (1991)

    Article  Google Scholar 

  3. Delplanque, J.-P., Sirignano, W.A.: Transcritical liquid oxygen droplet vaporization: effect on rocket combustion instability. Atom. Sprays 4, 325–349 (1996)

    Article  Google Scholar 

  4. Yang, V., Anderson, W.: Liquid propellant rocket combustion instability. In: Progress in Astronautics and Aeronautics, pp. 169. AIAA (1995)

  5. DiCicco, M., Buckmaster, J.: Acoustic instabilities driven by slip between a condensed phase and the gas-phase in combustion systems. In: 32nd AIAA Aerospace Sciences Meeting and Exhibit, Paper AIAA 94-0103, pp. 10–13. Reno (1994)

  6. Dubois, I., Habiballah, M., Lecourt, R.: Numerical analysis of liquid rocket engine combustion instability. In: 33rd AIAA Aerospace Sciences Meeting and Exhibit, Paper AIAA-95-0607, pp. 9–12. Reno (1995)

  7. Duvvur, A., Chiang, C.H., Sirignano, W.A.: Oscillatory fuel droplet vaporization: Driving mechanism for combustion instability. J. Propulsion Power 12(2), 358–365 (1996)

    Article  Google Scholar 

  8. Harrje, D.T., Reardon, F.H.: Liquid propellant rocket combustion instability. NASA SP-194 (1972)

  9. Heidmann, M.F., Wieber, P.R.: Analysis of frequency response characteristics of propellant vaporisation. NASA Technical Note D-3749 (1966)

  10. Heidmann, M.F.: Frequency response of a vaporization process to distorted acoustic disturbances. NASA Technical Note D-6806 (1972)

  11. Prud’homme, R.: Evaporation et combustion de gouttes dans les moteurs. Editions Techniques de l’Ingénieur, Traité de Mécanique (2009)

  12. Prud’homme, R.: Flows of reactive fluids. Book Series: Fluid Mechanics and its Applications. Springer (2010)

  13. Prud’homme, R., Habiballah, M., Matuszewski, L., Mauriot, Y., Nicole, A.: Theoretical analysis of dynamic response of a vaporizing droplet to acoustic oscillations. J. Propulsion Power 26(1), 74–83 (2010)

    Article  Google Scholar 

  14. Anani, K., Prud’homme, R., d’Almeida, S.A., Assiamoua, K.S.: Effect of thermal convection on frequency response of a perturbed vaporizing pastille-shaped droplet. Mech. Ind. 12(4), 300–313 (2011)

    Google Scholar 

  15. Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Progress Energy Combust. Sci. 32, 162–214 (2006)

    Article  Google Scholar 

  16. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)

    Article  Google Scholar 

  17. Law, C.K.: Recent advances in droplet vaporization and combustion. Proc. Energy Combust. Sci. 8, 171–201 (1982)

    Article  Google Scholar 

  18. Rayleigh, L.: The Theory of Sound. Macmillan (1945)

  19. Sirignano, W.A., Delplanque, J.-P., Chiang, C.H., Bhatia, R.: Liquid-propellant droplet vaporization: a rate controlling process for combustion instability in Liquid rocket engine combustion instability. In: Yang, V., Anderson, W. E. (eds.) Progress in Astronautics and Aeronautics, p 169. AIAA (1994)

  20. De Benedictis, M.: Instabilités couplées haute fréquence dans les moteurs-fusées ergols liquides: étude du couplage chambre de combustion / système d’alimentation. Thèse, Université de Poitiers. https://tel.archives-ouvertes.fr/tel-00283229/document(2007)

  21. Mauriot, Y., Prud’homme, R.: Assessment of evaporation equilibrium and stability concerning an acoustically excited drop in combustion products. C. R. Mecanique 342, 240–253 (2014)

    Article  Google Scholar 

  22. Hsiao, G.C., Meng, H., Yang, V.: Pressure-coupled vaporization response of n-pentane fuel droplet at subcritical and supercritical conditions. Proc. Combust. Inst. 33, 1997–2003 (2011)

    Article  Google Scholar 

  23. Lafon, P., Meng, H., Yang, V., Habiballah, M.: Pressure-coupled responses of lox droplet vaporization and combustion in high-pressure hydrogen environments. Combust. Sci. Technol. 186, 1191–1208 (2014)

    Article  Google Scholar 

  24. Lafon, P., Meng, H., Yang, V., Habiballah, M.: Vaporization of liquid oxygen (LOX)droplets in hydrogen and water environments under sub- and super-critical conditions. Combust. Sci. Technol. 180, 1–26 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwassi Anani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anani, K., Prud’homme, R. Theoretical Analysis of Thermal Conduction Effect on Frequency Response of a Perturbed Vaporizing Spherical Droplet. Flow Turbulence Combust 98, 503–522 (2017). https://doi.org/10.1007/s10494-016-9758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9758-x

Keywords

Navigation