Skip to main content

Advertisement

Log in

Effect of Local DBD Plasma Actuation on Transition in a Laminar Separation Bubble

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This work examines the effect of local active flow control on stability and transition in a laminar separation bubble. Experiments are performed in a wind tunnel facility on a NACA 0012 airfoil at a chord Reynolds number of 130 000 and an angle of attack of 2 degrees. Controlled disturbances are introduced upstream of a laminar separation bubble forming on the suction side of the airfoil using a surface-mounted Dielectric Barrier Discharge plasma actuator. Time-resolved two-component Particle Image Velocimetry is used to characterise the flow field. The effect of frequency and amplitude of plasma excitation on flow development is examined. The introduction of artificial harmonic disturbances leads to significant changes in separation bubble topology and the characteristics of coherent structures formed in the aft portion of the bubble. The development of the bubble demonstrates strong dependence on the actuation frequency and amplitude, revealing the dominant role of incoming disturbances in the transition scenario. Statistical, topological and linear stability theory analysis demonstrate that significant mean flow deformation produced by controlled disturbances leads to notable changes in stability characteristics compared to those in the unforced baseline case. The findings provide a new outlook on the role of controlled disturbances in separated shear layer transition and instruct the development of effective flow control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Carmichael, B.H.: Low reynolds number airfoil survey NASA CR 165803 (1981)

  2. Gaster, M.: The Structure and Behaviour of Laminar Separation Bubbles Reports and Memoranda, vol. 3595. Aeronautical Research Council, London (1967)

    Google Scholar 

  3. Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via Time-Resolved and scanning PIV measurements. Exp. Fluids 45(4), 675–691 (2008)

    Article  Google Scholar 

  4. Dovgal, A., Kozlov, V., Michalke, A.: Laminar boundary layer separation: Instability and associated phenomena. Prog. Aerosp. Sci. 30, 61–94 (1994)

    Article  Google Scholar 

  5. Hain, R., Kähler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at Low-Reynolds-Number aerofoils. J. Fluid Mech. 630, 129 (2009)

    Article  MATH  Google Scholar 

  6. Jones, L.E., Sandberg, R.D., Sandham, N.D.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010)

    Article  MATH  Google Scholar 

  7. Marxen, O., Henningson, D.S.: The effect of Small-Amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 1–33 (2011)

    Article  MATH  Google Scholar 

  8. Gad-el Hak, M.: Flow control: The future. J. Aircr. 38(3), 402–418 (2001)

    Article  Google Scholar 

  9. Marxen, O., Kotapati, R.B., Mittal, R., Zaki, T.: Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids (1994-present) 27(2), 024107 (2015)

    Article  Google Scholar 

  10. Postl, D., Balzer, W., Fasel, H.F.: Control of laminar separation using pulsed vortex generator jets: Direct numerical simulations. J. Fluid Mech. 676, 81–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yarusevych, S., Sullivan, P.E., Kawall, J.G.: Effect of acoustic excitation amplitude on airfoil boundary layer and wake development. AIAA J. 45(4), 760–771 (2007)

    Article  Google Scholar 

  12. Tani, I.: Low-Speed Flows involving bubble separations. Prog. Aerosp. Sci. 5, 70–103 (1964)

    Article  Google Scholar 

  13. Boutilier, M.S.H., Yarusevych, S.: Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24(8), 084105 (2012)

    Article  Google Scholar 

  14. Häggmark, C.P., Hildings, C., Henningson, D.S.: A numerical and experimental study of a transitional separation bubble. Aerosp. Sci. Technol. 5(5), 317–328 (2001)

    Article  MATH  Google Scholar 

  15. Lang, M., Rist, U., Wagner, S.: Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36(1), 43–52 (2004)

    Article  Google Scholar 

  16. Alam, M., Sandham, N.D.: Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 223–250 (2000)

    Article  MATH  Google Scholar 

  17. Jones, L.E., Sandberg, R.D., Sandham, N.D.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175–207 (2008)

    Article  MATH  Google Scholar 

  18. Marxen, O., Lang, M., Rist, U.: Vortex formation and vortex breakup in a laminar separation bubble. J. Fluid Mech. 728, 58–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yarusevych, S., Kawall, J.G., Sullivan, P.E.: Airfoil performance at low reynolds numbers in the presence of periodic disturbances. J. Fluids Eng., Transactions of the ASME, 128(3), 587–595 (2006)

    Article  Google Scholar 

  20. Yarusevych, S., Sullivan, P.E., Kawall, J.G.: Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys. Fluids 18(4), 044101 (2006)

    Article  Google Scholar 

  21. Yarusevych, S., Sullivan, P.E., Kawall, J.G.: On vortex shedding from an airfoil in Low-Reynolds-Number flows. J. Fluid Mech. 632, 245–271 (2009)

    Article  MATH  Google Scholar 

  22. Ol, M.V., Mcauliffe, B.R., Hanff, E.S., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit, June, Toronto (2005)

  23. Greenblatt, D., Wygnanski, I.J.: Control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000)

    Article  Google Scholar 

  24. Rizzetta, D.P., Visbal, M.R.: Numerical investigation of plasma-based control for low-reynolds-number airfoil flows. AIAA J. 49(2), 411–425 (2011)

    Article  MATH  Google Scholar 

  25. Boutilier, M.S.H., Yarusevych, S.: Effects of end plates and blockage on low-reynolds-number flows over airfoils. AIAA J. 50(7), 1547–1559 (2012)

    Article  Google Scholar 

  26. Pröbsting, S., Yarusevych, S.: Laminar separation bubble development on an airfoil emitting tonal noise. J. Fluid Mech. 780, 167–191 (2015)

    Article  Google Scholar 

  27. Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26, 074002 (2015)

    Article  Google Scholar 

  28. Burgmann, S., Dannemann, J., Schröder, W.: Time-Resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. Fluids 44(4), 609–622 (2008)

    Article  Google Scholar 

  29. Kotsonis, M., Ghaemi, S., Veldhuis, L., Scarano, F.: Measurement of the body force field of plasma actuators. J. Phys. D Appl. Phys. 44(4), 045204 (2011)

    Article  Google Scholar 

  30. Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26(9), 092001 (2015)

    Article  Google Scholar 

  31. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  Google Scholar 

  33. Benard, N., Moreau, E.: Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges. Exp. Fluids 54, 1467 (2013)

    Article  Google Scholar 

  34. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A Opt. Image Sci. 4(3), 519–524 (1987)

    Article  Google Scholar 

  35. Lengani, D., Simoni, D., Ubaldi, M., Zunino, P.: POD analysis of the unsteady behavior of a laminar separation bubble. Exp. Thermal Fluid Sci. 58, 70–79 (2014)

    Article  Google Scholar 

  36. Oudheusden, B., Scarano, F., Hinsberg, N., Watt, D.: Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39(1), 86–98 (2005)

    Article  Google Scholar 

  37. Diwan, S.S., Ramesh, O.N.: On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263–298 (2009)

    Article  MATH  Google Scholar 

  38. Boiko, A., Dovgal, A., Hein, S., Henning, A.: Particle image velocimetry of a Low-Reynolds-Number separation bubble. Exp. Fluids 50(1), 13–21 (2011)

    Article  Google Scholar 

  39. Van Ingen, J., Kotsonis, M.: A Two-Parameter Method for En Transition Prediction. In: 6th AIAA Theoretical Fluid Mechanics Conference (2011)

  40. Drazin, P.G., Reid, W.H.: Hydrodynamic stability (1981)

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant #112539) and TU Delft for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhiy Yarusevych.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarusevych, S., Kotsonis, M. Effect of Local DBD Plasma Actuation on Transition in a Laminar Separation Bubble. Flow Turbulence Combust 98, 195–216 (2017). https://doi.org/10.1007/s10494-016-9738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9738-1

Keywords

Navigation