Skip to main content
Log in

Influence of Gravitational Settling on Turbulent Droplet Clustering and Radar Reflectivity Factor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This study investigates the influence of gravitational settling of droplets on turbulent clustering and the radar reflectivity factor. A three-dimensional direct numerical simulation (DNS) of particle-laden isotropic turbulence is performed to obtain turbulent droplet clustering data. The turbulent clustering data are then used to calculate the power spectrum of droplet number density fluctuations. The results show that the gravitational settling modulates the power spectrum more significantly as the settling becomes larger. The gravitational settling weakens the intensity of clustering at large wavenumbers for St≤1, whereas it significantly enlarges the intensity for St>1. The dependence on the Taylor-microscale-based Reynolds number is also investigated to discuss the contribution of large-scale eddies to the settling influence. The results show that large-scale eddies modulate the small scale clustering structure of large St droplets. The increment of radar reflectivity factor due to turbulent clustering is estimated from the power spectrum for the case of St=1.0. The result shows that the influence of gravitational settling on the radar reflectivity factor can be significant for the case of large settling velocity droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ellis, S., Vivekanandan, J.: Liquid water content estimates using simultaneous s and k a band radar measurements. Radio Sci. 46, RS2021 (2011)

    Article  Google Scholar 

  2. Okamoto, H., Nishizawa, T., Takemura, T., Kumagai, H., Kuroiwa, H., Sugimoto, N., Matsui, I., Shimizu, A., Emori, S., Kamei, A., Nakajima, T.: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. J. Geophys. Res. 112, D08216 (2007)

    Article  Google Scholar 

  3. Stephens, G., Vane, D., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G., Austin, R., L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., Marchand, R.: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res 113, D00A18 (2008)

    Article  Google Scholar 

  4. Bohren, C., Huffman, D.: Absorption and scattering of light by small particles. Wiley (1983)

  5. Kostinski, A., Jameson, A.: On the spatial distribution of cloud particles. J. Atmos. Sci 57, 901–915 (2000)

    Article  Google Scholar 

  6. Gossard, E., Strauch, R.: Radar Observation of Clear Air and Clouds Developments in Atmospheric Science, vol. 14. Elsevir, New York (1983)

  7. Knight, C., Miller, L.: First radar echoes from cumulus clouds. Bull. Am. Meteorol. Soc 74, 179–188 (1993)

    Article  Google Scholar 

  8. Knight, C., Miller, L.: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci 55, 2974–2992 (1998)

    Article  Google Scholar 

  9. Rogers, R., Brown, W.: Radar observations of a major industrial fire. Bull. Amer. Meteor. Soc 78, 803–814 (1997)

    Article  Google Scholar 

  10. Chen, L., Goto, S., Vassilicos, J.: Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech 553, 143–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Squires, K., Eaton, J.: Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169–1178 (1991)

    Article  Google Scholar 

  12. Wang, L., Maxey, M.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mach 256, 27–68 (1993)

    Article  Google Scholar 

  13. Maxey, M.: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech 174, 441–465 (1987)

    Article  MATH  Google Scholar 

  14. Dombrovsky, L., Zaichik, L.: An effect of turbulent clustering on scattering of microwave radiation by small particles in the atmosphere. J. Quant. Spectro. Rad. Trans 111, 234–242 (2010)

    Article  Google Scholar 

  15. Matsuda, K., Onishi, R., Hirahara, M., Kurose, R., Takahashi, K., Komori, S.: Influence of microscale turbulent droplet clustering on radar cloud observations. J. Atmos. Sci 71, 3569–3582 (2014)

    Article  Google Scholar 

  16. Clarke, A., Voight, B., Neri, A., Macedonio, G.: Transient dynamics of vulcanian explosions and column collapse. Nature 415, 897–901 (2002)

    Article  Google Scholar 

  17. Valentine, G., Wohletz, K.: Numerical models of plinian eruption columns and pyroclastic flows. J. Geophys. Res 94(B2)

  18. Ayala, O., Rosa, B., Wang, L.P.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys 10, 075016 (2008)

    Article  Google Scholar 

  19. Ayala, O., Rosa, B., Wang, L.P., Grabowski, W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys 10, 075015 (2008)

    Article  Google Scholar 

  20. Bec, J., Homann, H., Ray, S.: Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett 112, 184501 (2014)

    Article  Google Scholar 

  21. Gustavsson, K., Vajedi, S., Mehlig, B.: Clustering of particles falling in a turbulent flow. Phys. Rev. Lett 112, 214501 (2014)

    Article  Google Scholar 

  22. Onishi, R., Takahashi, K., Komori, S.: Influence of gravity on collisions of monodispersed droplets in homogeneous isotropic turbulence. Phys. Fluids 21, 125108 (2009)

    Article  MATH  Google Scholar 

  23. Park, Y., Lee, C.: Gravity-driven clustering of inertial particles in turbulence. Phys. Rev. E 89, 061004(R) (2014)

    Article  Google Scholar 

  24. Woittiez, E., Jonker, H., Portela, L.: On the combined effects of turbulence and gravity on droplet collisions in clouds: A numerical study. J. Atmos. Sci 66, 1926–1943 (2009)

    Article  Google Scholar 

  25. Hirt, C., Cook, J.: Calculating three-dimensional flow around structures. J. Comput. Phys 10, 324–340 (1972)

    Article  MATH  Google Scholar 

  26. Onishi, R., Baba, Y., Takahashi, K.: Large-scale forcing with less communication in finite-difference simulations of steady isotropic turbulence. J. Comput. Phys 230, 4088–4099 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maxey, M., Riley, J.: Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. Phys. Fluids 26, 883–889 (1983)

    Article  Google Scholar 

  28. Kim, I., Elghobashi, S., Sirignano, W.: On the equation for spherical-particle motion: Effect of reynolds and acceleration numbers. J. Fluid Mech 367, 221–253 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Clift, R., Grace, J., Weber, M.: Bubbles, drops, and particles. Academic Press (1978)

  30. Grabowski, W., Vaillancourt, P.: Comments on preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci 56, 1433–1436 (1999)

    Article  Google Scholar 

  31. Yoshimoto, H., Goto, S.: Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech 577, 275–286 (2007)

    Article  MATH  Google Scholar 

  32. Bringi, V., Chandrasekar, V., Balakrishnan, N., Zrnić, D.: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol 7, 829–840 (1990)

    Article  Google Scholar 

  33. Goto, S., Vassilicos, J.: Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18, 115103 (2006)

    Article  MATH  Google Scholar 

  34. Pinsky, M., Khain, A., Krugliak, H.: Collision of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci 65, 357–374 (2008)

    Article  Google Scholar 

  35. Carey, L., Rutledge, S., Ahijevych, D., Keenan, T.: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Atmos. Sci 39, 1405–1433 (2000)

    Google Scholar 

Download references

Acknowledgments

The numerical simulations presented here were carried out on the supercomputer systems, including the Earth Simulator, operated by the Japan Agency for Marine-Earth Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keigo Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, K., Onishi, R. & Takahashi, K. Influence of Gravitational Settling on Turbulent Droplet Clustering and Radar Reflectivity Factor. Flow Turbulence Combust 98, 327–340 (2017). https://doi.org/10.1007/s10494-016-9735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9735-4

Keywords

Navigation