Skip to main content

Advertisement

Log in

Wind Impact on Single Vortices and Counterrotating Vortex Pairs in Ground Proximity

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Wall-resolved large eddy simulations are employed to investigate the behaviour of wake vortices and single vortices in ground proximity at a variety of wind conditions. The six considered strengths of wind, ranging between 0.5 and 4 times the initial wake vortex descent speed, w 0, include practically and theoretically significant wind speeds. A crosswind of 0.5 w 0 may lead to windward stall posing a potential hazard to subsequently landing aircraft, whereas theoretical considerations predict that at 4 w 0 the rebound of the luff vortex is completely suppressed. The same range of wind speeds is also used to investigate the effects of headwind and diagonal wind in order to discriminate between effects of environmental turbulence increasing with wind speed and the direction of the wind shear. The study has been complemented by a number of single vortex computations in order to differentiate between effects related to the mutual interaction of the vortex pair and the individual vortices with the turbulent boundary layer flow. It is shown that vortex ascent, descent, rebound and decay characteristics are controlled by (i) the interaction of the vortices with secondary vorticity detaching from the ground, (ii) the redistribution of vorticity of the boundary layer which is altering the path of the primary vortices by mutual velocity induction, and (iii) the interaction of the vortices with the environmental turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hallock, J.N., Greene, G.C., Burnham, D.C.: Wake vortex research - a retrospective look. Air Traffic Control Quart 6, 161–178 (1998)

    Google Scholar 

  2. Eurocontrol: Challenges of Growth 2013. Summary Report, http://www.eurocontrol.int/statfor. Accessed 6 July 2015 (2013)

  3. Holzäpfel, F., Steen, M.: Aircraft wake-vortex evolution in ground proximity: analysis and parameterization. AIAA J. 45, 218–227 (2007)

    Article  Google Scholar 

  4. Dengler, K., Holzäpfel, F., Gerz, T., Wiegele, A., De Visscher, I., Winckelmans, G., Bricteux, L., Fischer, H., Konopka, J.: Crosswind thresholds supporting Wake-Vortex-Free corridors for departing aircraft. Meteor. Appl. 19, 289–301 (2012). doi:10.1002/met.261

    Article  Google Scholar 

  5. Elsenaar, B., van der Geest, P., Speijker, L., de Bruin, A., Wolf, S., Braun, N., Gerz, T., Holzäpfel, F., Hahn, K.-U., Schwarz, C., Frech, M., Köpp, F., Mutuel, L., Bourrez, A., Barny, H., Barbaresco, F., Konopka, J., Winckelmans, G., Desenfans, O., Pugh, C., Davies, H., Galpin, D., Nicolaon, J.-P., Vidal, A., Harvey, A., Wennerberg, A., Schumacher, J., Luckner, R., Höhne, G., Fuhrmann, M., Laporte, F., Hinsinger, R., Schrauf, G., Turp, D., Agnew, P., Hill, C., Young, R., Coustols, E., Dolfi, A., Jacquin, L: Wake vortex research needs for “Improved Wake Vortex Separation Ruling” and “Reduced Wake Signatures”, Part II Specialists’s Reports, Final Report of the Thematic Network “WakeNet2-Europe”, 6th Framework Programme 114 pages (2006)

  6. Critchley, J., Foot, P.: UK CAA wake vortex database: analysis of incidents reported between 1982 and 1990. Civil aviation authority, CAA Paper 91 (1991)

  7. Rushton, D.: Preliminary results from FDR data collection campaign at London Heathrow, WakeNet-Europe 2015 Workshop, Amsterdam, http://www.wakenet.eu/index.php?id=190. Accessed 6 July 2015 (2015)

  8. SAFO 14007: Safety alert for operators, federal aviation administration, http://www.faa.gov/othervisit/aviationindustry/airlineoperators/airlinesafety/safo. Accessed 6 July 2015 (2014)

  9. Treve, V.: EUROCONTROL wake program. WakeNet-Europe 2015 Workshop, Amsterdam, http://www.wakenet.eu/index.php?id=190. Accessed 6 July 2015 (2015)

  10. Holzäpfel, F., Dengler, K., Gerz, T., Schwarz, C.: Prediction of dynamic pairwise wake vortex separations for approach and landing. AIAA Paper 2011–3037 (2011)

  11. Doligalski, T.L., Smith, C.R., Walker, J.D.A.: Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573–616 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stephan, A., Holzäpfel, F., Misaka, T.: Aircraft wake-vortex decay in ground proximity - physical mechanisms and artificial enhancement. J. Aircraft 50, 1250–1260 (2013). doi:10.2514/1.C032179

    Article  Google Scholar 

  13. Luton, A., Ragab, S., Telionis, D.: Interaction of spanwise vortices with a boundary layer. Phys. Fluids 7, 2757–2765 (1995)

    Article  MathSciNet  Google Scholar 

  14. Stephan, A., Holzäpfel, F., Misaka, T.: Hybrid simulation of wake-vortex evolution during landing on flat terrain and with plate line. Int. J. Heat Fluid Flow 49, 18–27 (2014). doi:10.1016/j.ijheatfluidflow.2014.05.004

    Article  Google Scholar 

  15. Prandtl, L.: Tragflächen-auftrieb und -Widerstand in der Theorie. Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, I. Lieferung, 35–39 (1921)

  16. Wieselsberger, C.: Über Den Flügelwiderstand in der Nähe des Bodens. Zeitschrift für Flugtechnik und Motorluftschiffahrt 10, 145–147 (1921)

    Google Scholar 

  17. Dee, F.S., Nicholas, O.P.: Flight measurement of wing tip vortex motion near the ground. CP 1065 british aeronautical research council (1968)

  18. Harvey, J.K., Perry, F.J.: Flowfield produced by trailing vortices in the vicinity of the ground. AIAA J. 9, 1659–1660 (1971)

    Article  Google Scholar 

  19. Barker, S.J., Crow, S.C.: The motion of Two-Dimensonal vortex pairs in a ground effect. J. Fluid Mech. 82, 659–671 (1977)

    Article  Google Scholar 

  20. Orlandi, P.: Vortex dipole rebound from a wall. Phys. Fluids A 2, 1429–1436 (1990)

    Article  Google Scholar 

  21. Schilling, V.K.: Motion and decay of trailing vortices within the atmospheric surface layer. Beitr. Phy. Atmos. 65, 157–169 (1992)

    Google Scholar 

  22. Robins, R.E., Delisi, D.P.: Potential hazard of aircraft wake vortices in ground effect with crosswind. J. Aircraft 30, 201–206 (1993)

    Article  Google Scholar 

  23. Zheng, Z.C., Ash, R.L.: Study of aircraft wake vortex behavior near the ground. AIAA J. 34, 580–589 (1996)

    Article  Google Scholar 

  24. Corjon, A., Poinsot, T.: Behavior of wake vortices near ground. AIAA J. 35, 849–855 (1997)

    Article  MATH  Google Scholar 

  25. De Visscher, I., Lonfils, T., Winckelmans, G.: Fast-Time modeling of ground effects on wake vortex transport and decay. J. Aircraft 50, 1514–1525 (2013)

    Article  Google Scholar 

  26. Corjon, A., Stoessel, A.: Three-Dimensional Instability of wake vortices near the ground. AIAA Paper, 97–1782 (1997)

  27. Luton, J.A., Ragab, S.A.: The Three-Dimensional interaction of a vortex pair with a wall. Phys. Fluids 9, 2967–2980 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Proctor, F.H., Hamilton, D.W., Han, J.: Wake vortex transport and decay in ground effect: vortex linking with the ground. AIAA Paper, 2000–0757 (2000)

  29. Hamilton, D.W., Proctor, F.H.: Wake vortex transport in the proximity of the ground. In: Proceedings of the 19th digital avionics conference, pp 1–8. AIAA and IEEE, Philadelphia (2000)

  30. Spalart, P.R., Strelets, M.K. h., Travin, A.K., Shur, M.L.: Modeling the interaction of a vortex pair with the ground. Fluid Dyn. 36, 899–908 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Giovannini, A., Georges, L., Geuzaine, P., Duponcheel, M., Bricteux, L., Lonfils, T., Winckelmans, G.: Effect of wind conditions on the evolution of a two-vortex system near the ground. Fundamental research on aircraft wake phenomena, Rept. AST4-CT-2005-012238 (2007). http://far-wake.irphe.univ-mrs.fr/IMG/deliverables/deliverables.html

  32. Liu, H.-T., Hwang, P.A., Srnsky, R.A.: Physical modeling of ground effects on vortex wakes. J. Aircraft 29, 1027–1034 (1992)

    Article  Google Scholar 

  33. Köpp, F.: Doppler lidar investigation of wake vortex transport between closely spaced parallel runways. AIAA J. 32, 805–810 (1994)

    Article  Google Scholar 

  34. Hallock, J.N., Osgood, S.P., Konopka, J.: Wake vortex effects on parallel runway operations. AIAA Paper, 2003–0379 (2003)

  35. Burnham, D.C., Hallock, J.N.: Measurements of wake vortices interacting with the ground. J. Aircraft 42, 1179–1187 (2005)

    Article  Google Scholar 

  36. Holzäpfel, F., Stephan, A., Heel, T., Körner, S.: Enhanced wake vortex decay in ground proximity triggered by plate lines. Aircraft Eng. Aeros. Techn. 88, 206–214 (2016). doi:10.1108/AEAT-02-2015-0045

    Article  Google Scholar 

  37. Holzäpfel, F., Tchipev, N., Stephan, A.: Wind impact on single vortices and counterrotating vortex pairs in ground proximity. AIAA Paper, 2015–3174 (2015)

  38. Tchipev, N.: Numerical Simulation of Wind Impact on Transport and Decay of Wake Vortices of Landing Aircraft. Master’s Thesis, Computational Science and Engineering, Technische Universität München, Munich (2013)

  39. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layer. Comput. Fluids 33, 435–461 (2004)

    Article  MATH  Google Scholar 

  40. Hokpunna, A., Manhart, M.: Compact fourth-order finite volume method for numerical solutions of navier-stokes equations on staggered grids. J. Comput. Phys. 229, 7545–7570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hirt, C.W., Cook, J.L.: Calculating three-dimensional flows around structures and over rough terrain. J. Comput. Phys. 10, 324–340 (1972)

    Article  MATH  Google Scholar 

  42. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic Subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

    Article  MATH  Google Scholar 

  44. Gerz, T., Holzäpfel, F., Darracq, D.: Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38, 181–208 (2002)

    Article  Google Scholar 

  45. Misaka, T., Obayashi, S., Stephan, A., Holzäpfel, F., Gerz, T., Nakahashi, K.: Numerical simulation of Jet-Wake vortex interaction. AIAA Paper, 2014–0926 (2014)

  46. de Bruin, A., Winckelmans, G.: Cross-flow kinetic energy and core size growth of analytically defined wake vortex pairs. Technical Report, NLR-CR-2005-412 NLR (2005)

  47. Delisi, D.P., Greene, G.C., Robins, R.E., Vicroy, D.C., Wang, F.Y.: Aircraft wake vortex core size measurements. AIAA Paper, 2003–3811 (2003)

  48. Holzäpfel, F., Gerz, T., Köpp, F., Stumpf, E., Harris, M., Young, R.I., Dolfi-Bouteyre, A.: Strategies for circulation evaluation of aircraft wake vortices measured by lidar. J. Atmos. Oceanic Technol. 20, 1183–1195 (2003)

    Article  Google Scholar 

  49. Holzäpfel, F., Stephan, A., Körner, S., Misaka, T.: Wake vortex evolution during approach and landing with and without plate lines. AIAA Paper, 2014–0925 (2014)

  50. Holzäpfel, F., Gerz, T., Frech, M., Tafferner, A., Köpp, F., Smalikho, I., Rahm, S., Hahn, K.-U., Schwarz, C.: The wake vortex prediction and monitoring system WSVBS - Part I: design. Air Traffic Control Quart 17, 301–322 (2009)

    Google Scholar 

Download references

Acknowledgments

We thank Prof. M. Manhart for the provision of the original version of the LES code MGLET. The provision of computation time on the supercomputer SuperMUC at the Leibniz-Rechenzentrum (LRZ) is gratefully acknowledged. The work was funded by the German Aerospace Research Center (DLR) projects Wetter & Fliegen and L-bows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Holzäpfel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzäpfel, F., Tchipev, N. & Stephan, A. Wind Impact on Single Vortices and Counterrotating Vortex Pairs in Ground Proximity. Flow Turbulence Combust 97, 829–848 (2016). https://doi.org/10.1007/s10494-016-9729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9729-2

Keywords

Navigation