Skip to main content
Log in

Assessment of the Dynamic SGS Wrinkling Combustion Modeling Using the Thickened Flame Approach Coupled with FGM Tabulated Detailed Chemistry

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The dynamic power-law wrinkling model proposed by Charlette et al. is coupled with Flamelet Generated Manifolds (FGM) tabulated chemistry combined with an artificially thickened flame model (ATF) for large eddy simulation. The dynamic formulation is similar to the “Germano” procedure and uses Taylor series based Gaussian filter. Thereby, the power-law wrinkling model parameter is considered to have both temporal and spatial dependency. Series of simulations are conducted for a lean premixed turbulent flame, using both dynamic and non-dynamic versions of the wrinkling model under different grid levels. The simulation results applying the non-dynamic wrinkling model show different behavior for each particular flame resolution, where none of the simulations could deliver the correct flame statistics, such as flame height. The dynamic version of the power-law wrinkling model improves the results independently of the flame resolution, as a consequence of the conservation of the total flame surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, third edition (2012)

  2. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30(1), 537–547 (2005)

    Article  Google Scholar 

  3. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38(1), 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candel, S., Durox, D., Schuller, T., Darabiha, N., Hakim, L., Schmitt, T.: Advances in combustion and propulsion applications. Eur. J. Mech. B. Fluids 40 (0), 87–106 (2013)

    Article  MathSciNet  Google Scholar 

  5. Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012)

    Article  Google Scholar 

  6. Hiremath, V., Ren, Z., Pope, S.B.: Combined dimension reduction and tabulation strategy using ISAT-RCCE-GALI for the efficient implementation of combustion chemistry. Combust. Flame 158(11), 2113–2127 (2011)

    Article  Google Scholar 

  7. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  8. Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154(4), 740–760 (2008)

    Article  Google Scholar 

  9. Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)

    Article  Google Scholar 

  10. Boger, M., Veynante, D., Boughanem, H., Trouv, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust. 27(1), 917–925 (1998)

    Article  Google Scholar 

  11. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids (1994-present) 12(7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  12. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part one: non-dynamic formulation and initial tests. Combust. Flame 131(1-2), 159–180 (2002)

    Article  Google Scholar 

  13. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)

    Article  Google Scholar 

  14. Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A filtered tabulated chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)

    Article  Google Scholar 

  15. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31(2), 3059–3066 (2007)

    Article  Google Scholar 

  16. Weller, H., Tabor, G., Gosman, A., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Symp. (Int.) Combust. 27(1), 899–907 (1998). Twenty-Seventh Sysposium (International) on Combustion Volume One

    Article  Google Scholar 

  17. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgridscale eddy viscosity model. Phys. Fluids A: Fluid Dyn. (1989–1993) 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

  18. Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids (1994-present) 16(11), L91–L94 (2004)

    Article  MATH  Google Scholar 

  19. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(2), 2199–2213 (2011)

    Article  Google Scholar 

  20. Schmitt, T., Sadiki, A., Fiorina, B., Veynante, D.: Impact of dynamic wrinkling model on the prediction accuracy using the F-TACLES combustion model in swirling premixed turbulent flamesp. Proc. Combust. Inst. 34(1), 1261–1268 (2013)

    Article  Google Scholar 

  21. Veynante, D., Schmitt, T., Boileau, M., Moureau, V.: Analysis of Dynamic Models for Turbulent Premixed Combustion. In: Proceedings of the Summer Program, p 387 (2012)

  22. Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)

    Article  Google Scholar 

  23. Kuenne, G., Ketelheun, A., Janicka, J.: LES Modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  24. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part two: dynamic formulation. Combust. Flame 131(1-2), 181–197 (2002)

    Article  Google Scholar 

  25. Zajadatz, M., Zarzalis, N., Leuckel, W.: Investigation of the Turbulent Flame Speed for Natural Gas and Natural Gas/Hydrogen Mixtures at High Turbulence Levels and Volumetric Heat Release Rates. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V01BT04A003–V01BT04A003, American Society of Mechanical Engineers (2013)

  26. Butler, T., O’Rourke, P.: A numerical method for two dimensional unsteady reacting flows. Symp. (Int.) Combust. 16(1), 1503–1515 (1977)

    Article  Google Scholar 

  27. Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158(7), 1340–1357 (2011)

    Article  Google Scholar 

  28. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38(7), 625–645 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zajadatz, M., Hettel, M., Leuckel, W.: Burning Velocity of High-Turbulence Natural Gas Flames for Gas Turbine Application. In: International Gas Research Conference, vol. 5, pp. 793–803, Government Insttutes Inc. (1998)

  30. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

  31. One-dimensional laminar flame code, eindhoven university of technology (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, A., Sadiki, A. & Janicka, J. Assessment of the Dynamic SGS Wrinkling Combustion Modeling Using the Thickened Flame Approach Coupled with FGM Tabulated Detailed Chemistry. Flow Turbulence Combust 96, 939–964 (2016). https://doi.org/10.1007/s10494-016-9715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9715-8

Keywords

Navigation