Skip to main content
Log in

A Two-Dimensional Tabulated Flamelet Combustion Model for Furnace Applications

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A new tabulated chemistry approach for representing turbulent combustion in industrial furnaces is presented. This model is based on the tabulation of two dimensional diffusion flamelets to account for ternary mixtures between fuel, oxidant and burned gases which are integrated over probability density functions. To avoid excessive CPU time for the table generation, the calculation of the two dimensional flamelets is performed using the method proposed in the ADF-PCM (Approximated Diffusion Flame - Presumed Conditional Moment) approach: only the equation for the progress variable is solved, instead of the equations for all species. The progress variable reaction rate is given by a table of homogeneous reactors using the DHR model (Diluted Homogeneous Reactor) proposed by Locci et al. These approximated diffusion flames are first compared to exact diffusion flames computed using the flamelet equations and the chemistry for all species. The resulting model, called A2DF (Approximate 2 Dimensional Flamelet) is then applied to the RANS (Reynolds Averaged Navier-Stokes) simulations of Sandia Flames D and F, showing a good agreement with experimental measurements. Finally, this model is applied to the flameless and conventional combustion cases of the burner of Verissimo et al., showing a correct agreement for temperature and species predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wunning, J., Wunning, J.: Prog. Energ. Combust. Sci. 23(1), 81–94 (1997)

    Article  Google Scholar 

  2. Cavaliere, A., de Joannon, M.: Prog. Energ. Combust. Sci. 30(4), 329–366 (2004)

    Article  Google Scholar 

  3. Magnussen, B., Hjertager, B.: pp 719–729. The Combustion Institute (1976)

  4. Magnussen, B.: 19th Americal Institute of Aeronautics and Astronautics Aerospace Science Meeting, St. Louis, Missouri, USA

  5. Peters, N.: Turbulent Combustion. Cambridge University Press (2000)

  6. Barlow, R., Frank, J.: Proc. combust. Inst. 27(1), 1087–1095 (1998)

    Article  Google Scholar 

  7. Vreman, A., Albrecht, B., van Oijen, J., de Goey, L., Bastiaans, R.: Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  8. Gicquel, O., Darabiha, N., Thevenin, D.: Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  9. Meester, R.D., Naud, B., Maas, U., Merci, B.: Combust. Flame 159 (7), 2415–2429 (2012)

    Article  Google Scholar 

  10. Pierce, C., Moin, P.: J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ihme, M., Pitsch, H.: Combust. Flame 155(1-2), 90–107 (2008)

    Article  Google Scholar 

  12. Peters, N., Hocks, W., Mohiuddin, G.: J. Fluid Mech. 110, 411–432 (1981)

    Article  Google Scholar 

  13. Barths, H., Hasse, C., Bikas, G., Peters, N.: Proc. Combust. Inst. 28 (1), 1161–1168 (2000)

    Article  Google Scholar 

  14. Lehtiniemi, H., Mauss, F., Balthasar, M., Magnusson, I.: Combust. Sci. Technol. 178, 1977–1997 (2006)

    Article  Google Scholar 

  15. Michel, J.-B., Colin, O., Veynante, D.: Combust. Flame 152(1-2), 80–99 (2008)

    Article  Google Scholar 

  16. Michel, J.-B., Colin, O., Angelberger, C., Veynante, D.: Combust. Flame 156(7), 1318–1331 (2009)

    Article  Google Scholar 

  17. Ihme, M., See, Y.C.: Proc. Combust. Inst. 33(1), 1309–1317 (2011)

    Article  Google Scholar 

  18. Ihme, M., Cha, C.M., Pitsch, H.: Proc. Combust. Inst., 793–800 (2005)

  19. Michel, J.-B.: Modélisation de la combustion turbulente d’un mélange hétérogène en auto-inflammation en vue de l’application à la simulation des moteurs Diesel. Ph.D. thesis, Ecole Centrale Paris (2008)

  20. Dally, B., Karpetis, A., Barlow, R.: Proc. Combust. Inst. 29(1), 1147–1154 (2002)

    Article  Google Scholar 

  21. Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Combust. Flame 161(8), 2120–2136 (2014)

    Article  Google Scholar 

  22. Verissimo, A., Rocha, A., Costa, M.: Energy Fuels 25, 2469–2480 (2011)

    Article  Google Scholar 

  23. Nguyen, P.-D., Vervisch, L., Subramanian, V., Domingo, P.: Combust. Flame 157(1), 43–61 (2010)

    Article  Google Scholar 

  24. Hasse, C., Peters, N.: Proc. Combust. Inst. 30(2), 2755–2762 (2005)

    Article  Google Scholar 

  25. Doran, E.M., Pitsch, H., Cook, D.J.: Proc. Combust. Inst. 34(1), 1317–1324 (2013)

    Article  Google Scholar 

  26. Barths, H., Hasse, C., Peters, N.: Int. J. Engine Research 1(3), 249–267 (2000)

    Article  Google Scholar 

  27. Locci, C., Colin, O., Michel, J.-B.: Flow Turbul. Combust. 93, 305–347 (2014)

    Article  Google Scholar 

  28. Doran, E.M., Pitsch, H., Cook, D.J.: SAE Technical Paper 2012-01-0133, 1–15 (2012)

  29. Kee, R., Rupley, F., Miller, J.: Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Tech. Rep. SAND89-8009B, Sandia National Laboratories (1989)

  30. Chen, J.H., Hawkes, E.R., Sankaran, R., Mason, S.D., Im, H.G.: Combust. Flame 145(1-2), 128–144 (2006)

    Article  Google Scholar 

  31. Colin, O., Benkenida, A.: Oil Gas Sci. Technol. 59, 593–609 (2004)

    Article  Google Scholar 

  32. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, R., abd Hanson, C.T., Song, S., Jr., G., W.C., Lissianski, V., Qin, Z.: http://www.me.berkely.eud/gri_mech/

  33. Bohbot, J., Gillet, N., Benkenida, A.: Oil Gas Sci. Technol. 64(3), 309–335 (2009)

    Article  Google Scholar 

  34. Vogiatzaki, K., Navarro-Martinez, S., De, S., Kronenburg, A.: Flow Turbul. Combust., 1–17 (2015)

  35. Elbahloul, S., Rigopoulos, S.: Combust. Flame 162(5), 2256–2271 (2015)

    Article  Google Scholar 

  36. Locci, C., Colin, O., Poitou, D., Mauss, F.: Flow, Turbul. Combust. 94(4), 691–729 (2015)

    Article  Google Scholar 

  37. Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., Ranzi, E., Buzzi-Ferraris, G.: Energy Fuels 27, 1104–1122 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Colin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, O., Michel, JB. A Two-Dimensional Tabulated Flamelet Combustion Model for Furnace Applications. Flow Turbulence Combust 97, 631–662 (2016). https://doi.org/10.1007/s10494-015-9699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9699-9

Keywords

Navigation