Skip to main content

Advertisement

Log in

Experimental and Numerical Simulations of Spray Impingement and Combustion Characteristics in Gasoline Direct Injection Engines under Variable Driving Conditions

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Gasoline direct injection (GDI) increases engine power output and reduces emissions. In GDI engines, increasing injection pressure improves atomization, which increases thermal efficiency at the cost of wall wetting. When wall wetting occurs, both soot emissions and fuel consumption increase. Wall wetting in GDI engines under cold driving conditions has rarely been considered. In this study, experimental data characterizing droplet splashing/spreading phenomena were collected to inform numerical simulations of combustion characteristics and wall wetting subject to variable driving conditions and excess air ratio, λ. Fully 3D and unsteady numerical simulations were carried out to predict flow-field, combustion, and spray-impingement characteristics. To simulate a GDI engine, a spray-impingement model was developed using both experimental data and previous modeling efforts. The excess air ratio and driving-condition temperature were the variable parameters considered in this study. When decreasing λ from 1.0 to 0.7 by increasing the fuel-injection rate (fuel rich), the cylinder pressure increases to 61 % of the pressure when λ=1.0. Because of increasing the fuel-injection rate, the increased momentum in the fuel spray increases both wall wetting and soot generation. At low driving-condition temperatures, the cylinder pressure was up to 63 % less than that under warm conditions, but with increased soot generation. Simulations revealed a correlation between wall wetting and the soot emissions. Soot generation was most sensitive to changes in wall wetting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwarz, C., Schünemann, E., Durst, B., Fischer, J., Witt, A.: Potentials of the spray-guided BMW DI combustion system. SAE Technical Paper 2006-01-1265 (2006)

  2. Husted, H., Spegar, T.D., Spakowski, J.: The Effects of GDi Fuel Pressure on Fuel Economy: SAE Technical Paper 2014-01-1438 (2014)

  3. Grimaldi, F., Gervais, D., Marchal, A., Floch, A.: Single-cylinder Experiments for Downsizing-Oriented SI Concepts: GDI and VVL Thermodynamic Comparison. SAE Technical Paper 2007-24-0013 (2007)

  4. Westrate, B., Warren, C., Vanderwege, B., Coulson, G., Anderson, R.: Dynamometer development results for a stratified-charge DISI combustion system. SAE Technical Paper 2002-01-2657 (2002)

  5. Hoffmann, G., Befrui, B., Berndorfer, A., Piock, W.F., Varble, D.L.: Fuel system pressure increase for enhanced performance of GDi multi-hole injection systems. SAE Technical Paper 2014-01-1209 (2014)

  6. Matsumoto, A., Moore, W.R., Lai, M.-C., Zheng, Y., Foster, M., Xie, X.-B., Yen, D., Confer, K., Hopkins, E.: Spray characterization of ethanol gasoline blends and comparison to a CFD model for a gasoline direct injector. SAE Technical Paper 2010-01-0601 (2010)

  7. Stojkovic, B.D., Fansler, T.D., Drake, M.C., Sick, V.: High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine. Proc. Combust. Inst. 30(2), 2657–2665 (2005)

    Article  Google Scholar 

  8. Stevens, E., Steeper, R.: Piston wetting in an optical DISI engine: fuel films, pool fires, and soot generation. SAE Technical Paper 2001-01-1203 (2001)

  9. Sabathil, D., Koenigstein, A., Schaffner, P., Fritzsche, J., Doehler, A.: The influence of DISI engine operating parameters on particle number emissions. SAE Technical Paper 2011-01-0143 (2011)

  10. Desoutter, G., Cuenot, B., Habchi, C., Poinsot, T.: Interaction of a premixed flame with a liquid fuel film on a wall. Proc. Combust. Inst. 30(1), 259–266 (2005)

    Article  Google Scholar 

  11. Drake, M.C., Fansler, T.D., Solomon, A.S., Szekely, G.: Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. 0096-736X, SAE Technical Paper 2003-01-0547 (2003)

  12. Choi, K., Kim, J., Ko, A., Myung, C.-L., Park, S., Lee, J.: Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle. J. Aerosol. Sci. 57, 1–13 (2013)

    Article  Google Scholar 

  13. Piock, W., Hoffmann, G., Berndorfer, A., Salemi, P., Fusshoeller, B.: Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Technical Paper 2011-01-1212 (2011)

  14. Whitaker, P., Kapus, P., Ogris, M., Hollerer, P.: Measures to reduce particulate emissions from gasoline DI engines. SAE Technical Paper 2011-01-1219 (2011)

  15. Seo, J., Lee, J.S., Choi, K.H., Kim, H.Y., Yoon, S.S.: Numerical investigation of the combustion characteristics and wall impingement with dependence on split-injection strategies from a gasoline direct-injection spark ignition engine. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 227(11), 1518–1535 (2013)

    Article  Google Scholar 

  16. Li, T., Nishida, K., Zhang, Y., Yamakawa, M., Hiroyasu, H.: An insight into effect of split injection on mixture formation and combustion of DI gasoline engines. SAE Technical Paper 2004-01-1949 (2004)

  17. Fan, Q., Li, L., Hu, Z., Deng, J.: Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines. SAE Technical Paper 2011-01-1222 (2011)

  18. Ristimäki, J., Keskinen, J., Virtanen, A., Maricq, M., Aakko, P.: Cold temperature PM emissions measurement: Method evaluation and application to light duty vehicles. Environ. Sci. Technol. 39(24), 9424–9430 (2005)

    Article  Google Scholar 

  19. Serras-Pereira, J., Aleiferis, P.G., Richardson, D.: Imaging and heat flux measurements of wall impinging sprays of hydrocarbons and alcohols in a direct-injection spark-ignition engine. Fuel 91(1), 264–297 (2012)

    Article  Google Scholar 

  20. Park, S., Ghandhi, J.: Fuel film temperature and thickness measurements on the piston crown of a direct-injection spark-ignition engine. SAE Technical Paper 2005-01-0649 (2005)

  21. O’Rourke, P.J.: A spray/wall interaction submodel for the KIVA-3 wall film model. SAE Technical Paper 2000-01-0271 (2000)

  22. Yi, J., Han, Z., Xu, Z., Stanley, L.E.: Combustion improvement of a light stratified-charge direct injection engine. 0096-736X, SAE Technical Paper 2004-01-0546 (2004)

  23. Millo, F., Badami, M., Bianco, A., Delogu, E.: CFD diagnostic methodology for the assessment of mixture formation quality in GDI engines, SAE Technical Paper 2011-24-0151 (2011)

  24. STAR-CD Version 4.20 User Manual and Methodology

  25. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Computat. Phys. 62(1), 40–65 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Asproulis, P.: High resolution numerical predictions of hypersonic flows on unstructured meshes. Ph.D Thesis. Imperial College London (1994)

  27. Kuo, K.K.K.: Principles of Combustion, 1st Edn. Wiley (1986)

  28. El Wakil, M.M., Uyehara, O., Myers, P.: A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air. NACA Technical Note, 3179 (1954)

  29. Bai, C.: Modelling of spray impingement processes. SAE Technical Paper 960626 (1996)

  30. Torres, D., O’rourke, P., Amsden, A.: Efficient multicomponent fuel algorithm. Combustion Theory and Modelling 7(1), 67–86 (2003)

    Article  Google Scholar 

  31. Friedrich, M.A., Lan, H., Wegener, J., Drallmeier, J., Armaly, B.F.: A separation criterion with experimental validation for shear-driven films in separated flows. J. Fluids Eng. 130(5), 051301 (2008)

    Article  Google Scholar 

  32. Maroteaux, F., Llory, D., Le Coz, J., Habchi, C.: Liquid film atomization on wall edges—separation criterion and droplets formation model. J. Fluids Eng. 124(3), 565–575 (2002)

    Article  Google Scholar 

  33. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A: Fluid Dyn. 4(7), 1510–1520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reitz, R.D., Diwakar, R.: Effect of drop breakup on fuel sprays. SAE Technical Paper 860469 (1986)

  35. O’Rourke, P.J.: Collective drop effects on vaporizing liquid sprays. Ph.D Thesis. Princeton University (1981)

  36. Colin, O., Benkenida, A.: The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion Le modèle ECFM3Z (3-Zones Extended Coherent Flame Model) pour le calcul de la combustion par flammes de prémélange et flammes de diffusion. Oil Gas Sci. Technol. 59, 593–609 (2004)

    Article  Google Scholar 

  37. Colin, O., Benkenida, A., Angelberger, C.: 3D modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines. Oil Gas Sci. Technol. 58(1), 47–62 (2003)

    Article  Google Scholar 

  38. Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)

    Article  Google Scholar 

  39. Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combustion and Flame 86(4), 311–332 (1991)

    Article  Google Scholar 

  40. Fichot, F., Lacas, F., Veynante, D., Candel, S.: One-dimensional propagation of a premixed turbulent flame with a balance equation for the flame surface density. Combust. Sci. Technol. 90(1–4), 35–60 (1993)

    Article  Google Scholar 

  41. Karlsson, A., Magnusson, I., Balthasar, M., Mauss, F.: Simulation of soot formation under diesel engine conditions using a detailed kinetic soot model. SAE Technical Paper 981022 (1998)

  42. Han, Z., Yi, J., Trigui, N.: Stratified mixture formation and piston surface wetting in a DISI engine. SAE Technical Paper 2002-01-2655 (2002)

  43. Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 31(1), 99–124 (2007)

    Article  Google Scholar 

  44. Chryssakis, C., Assanis, D.N.: A unified fuel spray breakup model for internal combustion engine applications. Atomization and Sprays 18(5) (2008)

  45. Mundo, C., Sommerfeld, M., Tropea, C.: Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int. J. Multiphase Flow 21(2), 151–173 (1995)

    Article  MATH  Google Scholar 

  46. Rosa, N.G., Villedieu, P., Dewitte, J., Lavergne, G.: A new droplet-wall interaction model. In: Proceedings of the 10th International Conference on Liquid Atomization and Spray System, Tokyo (2006)

  47. Stanton, D.W., Rutland, C.J.: Modeling fuel film formation and wall interaction in diesel engines. SAE Technical Paper 960628 (1996)

  48. Grover, R.O., Assanis, D.N.: A spray wall impingement model based upon conservation principles. In: 5th International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Nagoya (2001)

  49. Bai, C., Gosman, A.: Development of methodology for spray impingement simulation. SAE Technical Paper 950283 (1995)

  50. Yarin, A., Weiss, D.: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)

    Article  Google Scholar 

  51. Stow, C., Stainer, R.: The physical products of a splashing water drop. J. Meteorolog. Soc. Jpn. 55, 518–532 (1977)

    Google Scholar 

  52. Mutchler, C.K.: Size, travel and composition of droplets formed by waterdrop splash on thin water layers. Ph.D Thesis, University of Minnuesota (1970)

  53. Marmanis, H., Thoroddsen, S.: Scaling of the fingering pattern of an impacting drop. Phys. Fluids 8(6), 1344–1346 (1996)

    Article  Google Scholar 

  54. Yoon, S.S., DesJardin, P.E.: Modelling spray impingement using linear stability theories for droplet shattering. Int. J. Numer. Methods Fluids 50(4), 469–489 (2006)

    Article  MATH  Google Scholar 

  55. McCarthy, M., Molloy, N.: Review of stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7(1), 1–20 (1974)

    Article  Google Scholar 

  56. Weber, C.: Zum zerfall eines flüssigkeitsstrahles. Z. Angew. Math. Mech. 11(2), 136–154 (1931)

    Article  MATH  Google Scholar 

  57. Allen, R.F.: The role of surface tension in splashing. J. Colloid Interface Sci. 51(2), 350–351 (1975)

    Article  Google Scholar 

  58. Ghadiri-Khorzooghi, H.: Raindrop Impact, Soil Splash, and Cratering. Ph.D Thesis, University of Reading (1978)

  59. Montanaro, A., Malaguti, S., Alfuso, S.: Wall impingement process of a multi-hole GDI spray: Experimental and numerical investigation. SAE Technical Paper 2012-01-1266 (2012)

  60. Ryu, S.: An experimental study on post-impingement behavior of an electrically charged droplet. Ph.D Thesis, Korea Advanced Institute of Science and Technology (2008)

  61. Seo, J., Lee, J.S., Kim, H.Y., Yoon, S.S.: Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Exp. Therm Fluid Sci. 61, 121–129 (2015)

    Article  Google Scholar 

  62. Wachters, L., Westerling, N.: The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Eng. Sci. 21(11), 1047–1056 (1966)

    Article  Google Scholar 

  63. Senda, J., Kanda, T., Al-Roub, M., Farrell, P.V., Fukami, T., Fujimoto, H.: Modeling spray impingement considering fuel film formation on the wall. SAE Technical Paper 970047 (1997)

  64. Senda, J., Kobayashi, M., Iwashita, S., Fujimoto, H.: Modeling of diesel spray impinging on flat wall. SAE Technical Paper 941894 (1994)

  65. Powell, J., Lee, C.F.: Experimental top and side view pictures of an impinging fuel spray, Madison (2002)

  66. Christensen, M., Johansson, B., Amnéus, P., Mauss, F.: Supercharged homogeneous charge compression ignition. SAE Technical Paper 980787 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Kim, H.Y., Park, S. et al. Experimental and Numerical Simulations of Spray Impingement and Combustion Characteristics in Gasoline Direct Injection Engines under Variable Driving Conditions. Flow Turbulence Combust 96, 391–415 (2016). https://doi.org/10.1007/s10494-015-9678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9678-1

Keywords

Navigation