Skip to main content

Advertisement

Log in

H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

MILD combustion is a very attractive technology because of its intrinsic features for energy production from diluted gas deriving from bio- or thermochemical degradation of biomass. An effective use of such a technology for diluted fuel requires a thorough analysis of ignition and oxidation behavior to highlight the potential effects of the different fuel components on the basis of temperature and diluent/oxygen/fuel mixture composition. In this work, ignition and oxidation of a model gas surrogate for the gaseous fraction of biomass pyrolysis products containing C1-C2 species, CO and CO2 were experimentally and numerically studied over a wide range of temperature and overall composition in the presence of large amounts of CO2 or H2O. Experimental results showed that such species significantly alter the evolution of the ignition process in dependence on temperature range and mixture composition. Several kinetic models were tested to simulate experimental results. Significant discrepancies occur, especially in the case of steam dilution. Numerical analyses suggested that such diluents acted mainly as third body species at low temperatures, conditioning both radical production pathways and the relative weight of C1 oxidation/recombination routes, while strongly interacting with the H2/O2 high temperature branching mechanisms at high temperatures. Further analyses are mandatory to improve the predictability of the models and extend the applicability of the chemical schemes to non-standard conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energ. Rev 14, 578–597 (2010)

    Article  Google Scholar 

  2. Bridgwater, A.V., Czernik, S., Piskorz, J.: The status of biomass fast pyrolysis. In: Bridgwater, A.V. (ed.) Fast Pyrolysis of Biomass: A Handbook, vol. 2. CPL Press (2008)

  3. López Juste, G., Salvá Monfort, J.J.: Preliminary test on combustion of wood derived fast pyrolysis oil in a gas turbine combustor. Biomass and Bioenergy 19(2), 119–128 (2000)

    Article  Google Scholar 

  4. Baglioni, P., Chiaramonti, D., Bonini, M., Soldaini, I., Tondi, G.: Bio-Crude-Oil/Diesel oil emulsification: main achievements of the emulsification process and preliminary results of tests on diesel engine. In: Bridgwater, A.V (ed.) Progress in Thermochemical Biomass Conversion, pp. 1525–1539. Blackwell Science Ltd, Oxford (2001)

    Chapter  Google Scholar 

  5. Cavaliere, A., de Joannon, M., Ragucci, R.: Highly preheated lean combustion. In: Dunn-Rankin, D (ed.) Lean Combustion Technology and Control, pp. 55–90. Elsevier, San Diego (2007)

    Google Scholar 

  6. de Joannon, M., Sabia, P., Cavaliere, A.: Mild Combustion. In: Lackner, M., Winter, F., Agarwal, A.K. (eds.) Handbook of Combustion, vol. 5, pp. 237–256. WILEY-VCH, Weinheim (2010)

    Google Scholar 

  7. Jahangirian, S., Engeda, A., Wichman, I.S.: Thermal and chemical structure of biogas counterflow diffusion flames. Energ. Fuels 23(11), 5312–5321 (2009)

    Article  Google Scholar 

  8. Chen, S., Zheng, C.: Counterflow diffusion flame of hydrogen-enriched biogas under MILD oxy-fuel condition. Int. J. Hydrogen Energ 36(23), 15403–15413 (2011)

    Article  Google Scholar 

  9. de Joannon, M., Sabia, P., Cozzolino, G., Sorrentino, G., Cavaliere, A.: Pyrolytic and Oxidative Structures in Hot Oxidant Diluted Oxidant (HODO) MILD Combustion. Combust. Sci. Tech 184(7-8), 1207–1218 (2012)

    Article  Google Scholar 

  10. Glarborg, P., Bentzen, L.L.B.: Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energ. Fuels 22(1), 291–296 (2008)

    Article  Google Scholar 

  11. Heil, P., Toporov, D., Förster, M., Kneer, R.: Experimantal Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane. Proc. Combust. Inst 33 (2), 3407–3413 (2011)

    Article  Google Scholar 

  12. Le Cong, T., Dagaut, P.: Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition. Comb. Sci. Tech 180(10-11), 2046–2091 (2008)

    Article  Google Scholar 

  13. Bilcan, A., Le Corre, O., Delebarre, A.: Thermal efficiency and environmental performances of a biogas-diesel stationary engine. Environ. Technol 24(9), 1165–1173 (2003)

    Article  Google Scholar 

  14. Anderlohr, J.M., Cruz, A.P., Bounaceur, R., Battin-Leclerc, F.: Thermal and kinetic impact of CO, CO2, and H2O on the postoxidation of IC-engine exhaust gases. Combust. Sci. Tech 182, 39–59 (2010)

    Article  Google Scholar 

  15. Abian, M., Gimenez-Lopez, J., Bilbao, R., Alzueta, M.U.: Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling. Proc. Combust. Inst 33, 317–323 (2011)

    Article  Google Scholar 

  16. Sabia, P. Lubrano Lavadera, Giudicianni, M., Sorrentino, P., Ragucci, G.R., de Joannon, M.: CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. Comb. Flame 162(3), 533–543 (2015)

    Article  Google Scholar 

  17. Sabia, P, de Joannon, M., Picarelli, A., Ragucci, R.: Methane auto-ignition delay times and oxidation regimes in MILD combustion at atmospheric pressure. Comb. Flame. 160(1), 47–55 (2013)

    Article  Google Scholar 

  18. Sabia, P.: Experimental and numerical studies of mild combustion processes in model reactors. Ph.D. thesis, Università degli Studi di Napoli Federico II. Naples, Italy (2006)

    Google Scholar 

  19. Sabia, P, de Joannon, M., Lubrano Lavadera, M., Giudicianni, P., Ragucci, R.: Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Comb. Flame 161, 3022–3030 (2014)

    Article  Google Scholar 

  20. de Joannon, M., Cavaliere, A., Donnarumma, R., Ragucci, R.: Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin. Proc. Combust. Inst 29(1), 1139–1146 (2002)

    Article  Google Scholar 

  21. Abtahizadeh, E., van Oijen, J., de Goey, P.: Numerical study of MILD combustion with entrainment of burned gas into oxidizer and/or fuel streams. Comb. Flame. 159(6), 2155–2165 (2012)

    Article  Google Scholar 

  22. Di Blasi, C.: Combustion and gasification rates of lignocellulosic chars. Prog. Energ. Combust. Sci 35, 121–140 (2009)

    Article  Google Scholar 

  23. Mueller, C.L., Musculus, M.P.B., Pitz, W.J., Westbrook, C.K.: The Oxygen Ratio: A Fuel-Independent Measure of Mixture Stoichiometry. https://e-reports-ext.llnl.gov/pdf/303708.pdf (2003). Accessed December 2003 (Pickett, L.M.)

  24. CHEMKIN Collection, Release 3.7, Reaction Design, Inc. San Diego, CA (2003)

  25. Zhukov, V.P., Sechenov, V.A., Starikovskii, A.Yu: Autoignition of a Lean Propane-Air Mixture at High Pressures. Kinet. Catal. 46(3), 319–327 (2005)

    Article  Google Scholar 

  26. Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., Law, C.K.: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energ. Combust 38(4), 468–501 (2012)

    Article  Google Scholar 

  27. Sabia, P, de Joannon, M., Picarelli, A., Chinnici, A., Ragucci, R.: Modeling Negative Temperature Coefficient region in methane oxidation. Fuel 91(1), 238–245 (2012)

    Article  Google Scholar 

  28. de Joannon, M., Cavaliere, A., Faravelli, T., Ranzi, E., Sabia, P., Tregrossi, A.: Analysis of Process Parameters for Steady Operations in Methane Mild Combustion Technology. Proc. Combust. Inst 30(2), 2605–2612 (2005)

    Article  Google Scholar 

  29. Jasper, A.W., Miller, J.A., Klippenstein, S.J.: The collision efficiency of water in the unimolecular reaction CH4 (+ H2O) → CH3 + H (+ H2O): One-dimensional and two-dimensional solutions of the low-pressure-limit master equation. J. Phys. Chem. A 117(47), 12243–12255 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lubrano Lavadera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabia, P., Lubrano Lavadera, M., Sorrentino, G. et al. H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons. Flow Turbulence Combust 96, 433–448 (2016). https://doi.org/10.1007/s10494-015-9667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9667-4

Keywords

Navigation