Skip to main content
Log in

Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulation (DNS) of turbulent combustion is a research area becoming ever more important and has been established as a powerful tool in combustion science to complement theory and experiment. The rapid advancement of supercomputing has lately enabled a series of interesting DNS studies with some practical relevance. This advent along with the severe lack of experimental data sets with a high degree of data completeness motivates the use of DNS for combustion modeling. Simultaneously, enormous progress is made in the utilization of DNS data as a valuable resource to develop and validate combustion models from DNS data. In this paper, several promising and useful analysis techniques are identified and reviewed. Their usefulness is demonstrated on the basis of selected modeling studies, which comprise examples of various commonly employed modeling frameworks, and which integrate DNS in a systematic way into the process of model development and validation. It is expected that the modeling routes outlined here can be used to address currently open modeling questions and to advance the fidelity of existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali Sen, B., Hawkes, E.R., Menon, S.: Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combust. Flame 157, 566–578 (2010)

    Article  Google Scholar 

  2. Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161, 1849–1865 (2014)

    Article  Google Scholar 

  3. Balarac, G., Pitsch, H., Raman, V.: Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators. Phys. Fluids 20, 035114 (2008)

    Article  Google Scholar 

  4. Balarac, G., Pitsch, H., Raman, V.: Modeling of the subfilter scalar dissipation rate using the concept of optimal estimators. Phys. Fluids 20, 091701 (2008)

    Article  Google Scholar 

  5. Bansal, G., Mascarenhas, A., Chen, J.H.: Direct numerical simulations of autoignition in stratified dimethyl-ether (DME)/air turbulent mixtures. Combust. Flame 162, 688–702 (2015)

    Article  Google Scholar 

  6. Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M., Smiljanovski, V.: Simulation of pollutant formation in a gas turbine combustor using unsteady flamelets. Proc. Combust. Inst. 27, 1841–1847 (1998)

    Article  Google Scholar 

  7. Barths, H., Pitsch, H., Peters, N.: 3D simulation of DI Diesel combustion and pollutant formation using a two-component reference fuel. Oil Gas Sci. Technol. 54, 233–244 (1999)

    Article  Google Scholar 

  8. Bhagatwala, A., Chen, J.H., Lu, T.: Direct numerical simulations of HCCI/SACI with ethanol. Combust. Flame 161, 1826–1841 (2014)

    Article  Google Scholar 

  9. Bisetti, F., Attili, A., Pitsch, H.: Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulation. Phil. Trans. R. Soc. A 372, 20130324 (2014)

    Article  Google Scholar 

  10. Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Berat, C.: LES of an ignition sequence in a gas turbine. Combust. Flame 154, 2–22 (2008)

    Article  Google Scholar 

  11. Chan, W.L., Kolla, H., Chen, J.H., Ihme, M.: Assessment of model assumptions and budget terms of the unsteady flamelet equations for a turbulent reacting jet-in-cross-flow. Combust. Flame 161, 2601–2613 (2014)

    Article  Google Scholar 

  12. Chatakonda, O., Hawkes, E.R., Brear, M.J., Chen, J.H., Knudsen, E., Pitsch, H.: Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation. In: Proceeding of the CTR Summer Program, pp 271–280. Stanford University (2010)

  13. Chen, J.H.: Petascale direct numerical simulation of turbulent combustion – fundamental insights towards predictive models. Proc. Combust. Inst. 33, 99–123 (2011)

    Article  Google Scholar 

  14. Chen, J.H., Choudhary, A., Supinski, B.D., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.S.: Terrascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discovery 2, 015001 (2009)

    Article  Google Scholar 

  15. Cook, D.J., Pitsch, H., Chen, J.H., Hawkes, E.R.: Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proc. Combust. Inst. 31, 2903–2911 (2007)

    Article  Google Scholar 

  16. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  17. Day, M., Tachibana, S., Bell, J., Lijewski, M., Beckner, V., Cheng, R.K.: A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames: I. methane flames. Combust. Flame 159, 275–290 (2012)

    Article  Google Scholar 

  18. Day, M.S., Bell, J.B.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4, 535–556 (2000)

    Article  MATH  Google Scholar 

  19. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Doran, E.M., Pitsch, H., Cook, D.J.: A priori testing of a two-dimensional unsteady flamelet model for three-feed combustion systems. Proc. Combust. Inst. 34, 1317–1324 (2013)

    Article  Google Scholar 

  21. Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007)

    Article  Google Scholar 

  22. Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Advic, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Cavallo Marincola, F., Kempf, A.: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame. doi:10.1016/j.combustflame.2015.07.036

  23. Foster, F.W., Miller, R.S.: Survey of turbulent combustion models for large-eddy simulations of propulsive flowfields. In: 53rd AIAA Aerospace Sciences Meeting. AIAA (2015)

  24. Frank, J.H., Barlow, R.S.: Simultaneous rayleigh, raman, and LIF measurements in turbulent premixed methane-air flames. Proc. Combust. Inst. 27, 759–766 (1998)

    Article  Google Scholar 

  25. Gicquel, L.Y.M., Staffelback, G., Poinsot, T.: Large-Eddy Simulations of gaseous flames in gas turbines combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)

    Article  Google Scholar 

  26. Gotoh, T., Fukayama, D., Nakano, T.: Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14, 1065 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grout, R.W., Gruber, A., Kolla, H., Bremer, P.T., Bennett, J.C., Gyulassy, A., Chen, J.H.: A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet–trajectory based coordinates. J. Fluid Mech. 706, 351–383 (2012)

    Article  MATH  Google Scholar 

  28. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical study. J. Fluid Mech. 658, 5–32 (2010)

    Article  MATH  Google Scholar 

  29. Hamlington, P.E., Poludnenko, A.Y., Oran, E.S.: Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111 (2011)

    Article  Google Scholar 

  30. Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)

    Article  Google Scholar 

  31. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H 2 kinetics. Proc. Combust. Inst. 31, 1633–1640 (2007)

    Article  Google Scholar 

  32. Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure. Combust. Flame 155, 70–89 (2008)

    Article  Google Scholar 

  33. Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high–reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180 (2009)

    Article  MathSciNet  Google Scholar 

  34. Ishihara, T., Kaneda, Y., Yokowaka, M., Itakura, K., Uno, A.: Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335–366 (2007)

    Article  MATH  Google Scholar 

  35. James, S., Zhu, J., Anand, M.S.: Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)

    Article  Google Scholar 

  36. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  37. Kaul, C.M., Raman, V.: A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulation. Phys. Fluids 23, 035102 (2011)

    Article  Google Scholar 

  38. Kaul, C.M., Raman, V.: Analysis of a dynamic model for subfilter scalar dissipation rate in large eddy simulation based on the subfilter scalar variance transport equation. Combust. Theor. Model. 17, 804–834 (2013)

    Article  MathSciNet  Google Scholar 

  39. Kaul, C.M., Raman, V., Knudsen, E., Richardson, E.S., Chen, J.H.: Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Combust. Inst. 34, 1289–1297 (2013)

    Article  Google Scholar 

  40. Kim, S.O., Luong, M.B., Chen, J.H., Yoo, C.S.: A DNS study of the ignition of lean PRF/air mixtures with temperature inhomogeneities under high pressure and intermediate temperature. Combust. Flame 162, 717–726 (2015)

    Article  Google Scholar 

  41. Knudsen, E., Kim, S.H., Pitsch, H.: An analysis of premixed flamelet models for large eddy simulation of turbulent combustion. Phys. Fluids 22, 115109 (2010)

    Article  Google Scholar 

  42. Knudsen, E., Kolla, H., Hawkes, E.R., Pitsch, H.: LES of a premixed jet flame DNS using a strained flamelet model. Combust. Flame 160, 2911–2927 (2013)

    Article  Google Scholar 

  43. Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154, 740–760 (2008)

    Article  Google Scholar 

  44. Knudsen, E., Richardson, E.S., Doran, E.M., Pitsch, H., Chen, J.H.: Modeling scalar dissipation and scalar variance in large eddy simulation: Algebraic and transport equation closures. Phys. Fluids 24, 055103 (2012)

    Article  Google Scholar 

  45. Krisman, A., Tang, J.C.K., Hawkes, E.R., Lignell, D.O., Chen, J.H.: A DNS evaluation of mixing models for transported PDF modelling of turbulent nonpremixed flames. Combust. Flame 161, 2085–2106 (2014)

    Article  Google Scholar 

  46. Lee, D., Huh, K.Y.: Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames. Combust. Flame 159, 1576–1591 (2012)

    Article  Google Scholar 

  47. Lignell, D.O., Chen, J.H., Schmutz, H.A.: Effects of Damköhler number on flame extinction and reignition in turbulent non-premixed flames using DNS. Combust. Flame 158, 949–963 (2011)

    Article  Google Scholar 

  48. Lignell, D.O., Fredline, G.C., Lewis, A.D.: Comparison of one-dimensional turbulence and direct numerical simulations of soot formation and transport in a nonpremixed ethylene jet flame. Proc. Combust. Inst. 35, 1199–1206 (2015)

    Article  Google Scholar 

  49. Lignell, D.O., Hewson, J.C., Chen, J.H.: A-priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using direct numerical simulation. Proc. Combust. Inst. 32, 1491–1498 (2009)

    Article  Google Scholar 

  50. Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)

    Article  Google Scholar 

  51. Lu, T., Law, C.K., Yoo, C.S., Chen, J.H.: Dynamic stiffness removal for direct numerical simulations. Combust. Flame 156, 1542–1551 (2009)

    Article  Google Scholar 

  52. Luo, K., Pitsch, H., Pai, M.G., Desjardins, O.: Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proc. Combust. Inst. 33, 2143–2152 (2011)

    Article  Google Scholar 

  53. Mahesh, K., Constantinescu, G., Apte, S.V., Iaccarino, G., Ham, F., Moin, P.: Large-eddy simulation of reacting turbulent flows in complex geometries. J. Appl. Mech. 73, 375–381 (2006)

    Article  Google Scholar 

  54. Mass, U., Thévenin, D.: Correlation analysis of direct numerical simulation data of turbulent non-premixed flames. Proc. Combust. Inst. 27, 1183–1189 (1998)

    Article  Google Scholar 

  55. McNenly, M.J., Whitesides, R.A., Flowers, D.L.: Faster solvers for large kinetic mechanisms using adaptive preconditioners. Proc. Combust. Inst. 35, 581–587 (2015)

    Article  Google Scholar 

  56. Meier, W., Weigand, P., Duan, X.R., Giezendanner-Thoben, R.: Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150, 2–26 (2007)

    Article  Google Scholar 

  57. Minamoto, Y., Swaminathan, N.: Scalar gradient behaviour in MILD combustion. Proc. Combust. Inst. 35, 3529–3536 (2015)

    Article  Google Scholar 

  58. Mittal, V., Pitsch, H.: A flamelet model for premixed combustion under variable pressure conditions. Proc. Combust. Inst. 34, 2995–3003 (2013)

    Article  Google Scholar 

  59. Mizobuchi, Y., Shinjo, J., Ogawa, S., Takeno, T.: A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611–619 (2005)

    Article  Google Scholar 

  60. Moreau, A., Teytaud, O., Bertoglio, J.P.: Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models. Phys. Fluids 18, 105101 (2006)

    Article  MathSciNet  Google Scholar 

  61. Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modeling. Combust. Flame 158, 1340–1357 (2011)

    Article  Google Scholar 

  62. Mueller, M.E., Pitsch, H.: Large eddy simulation subfilter modeling of soot-turbulence interactions. Phys. Fluids 23, 115104 (2012)

    Article  Google Scholar 

  63. Nonaka, A., Bell, J.B., Day, M.S., Gilet, C., Almgren, A.S., Minion, M.L.: A deferred correction coupling strategy for low mach number flow with complex chemistry. Combust. Theor. Model. 16, 1053–1088 (2012)

    Article  Google Scholar 

  64. Oefelein, J.C.: Analysis of turbulent combustion modeling approaches for aero-propulsion applications. In: 53rd AIAA Aerospace Sciences Meeting. AIAA (2015)

  65. Parente, A., Sutherland, J.C.: Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity. Combust. Flame 160, 340–350 (2013)

    Article  Google Scholar 

  66. Peeters, T.W.J., Stroomer, P.P.J, de Vries, J.E., Roekaerts, D.J.E.M., Hoogendoorn, C.J.: Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame. Proc. Combust. Inst. 25, 1241–1248 (1994)

    Article  Google Scholar 

  67. Perini, F., Galligani, E., Reitz, R.D.: A study of direct and krylov iterative sparse solver techniques to approach linear scaling of the integration of chemical kinetics with detailed combustion mechanisms. Combust. Flame 161, 1180–1195 (2014)

    Article  Google Scholar 

  68. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  69. Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 1–25 (2009)

    Article  Google Scholar 

  70. Philip, M., Boileau, M., Vicquelin, R., Schmitt, T., Durox, D., Bourgouin, J.F., Candel, S.: Simulation of the Ignition Process in an Annular Multiple-Injector Combustor and Comparison With Experiments. J. Eng. Gas Turbines Power 137, 031501 (2014)

    Article  Google Scholar 

  71. Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–483 (2006)

    Article  MathSciNet  Google Scholar 

  72. Pitsch, H., Desjardins, O., Balarac, G., Ihme, M.: Large-eddy simulation of turbulent reacting flows. Prog. Aerospace Sci. 44, 466–478 (2008)

    Article  Google Scholar 

  73. Pitsch, H., Fedotov, S.: Investigation of scalar dissipation rate fluctuations in non-premixed turbulent combustion using a stochastic approach. Combust. Theor. Model. 5, 41–57 (2001)

    Article  MATH  Google Scholar 

  74. Pitsch, H., Steiner, H.: Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc. Combust. Inst. 28, 41–49 (2000)

    Article  Google Scholar 

  75. Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  76. Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.: An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H 2 jets with extinction and reignition. Proc. Combust. Inst. 33, 1515–1522 (2011)

    Article  Google Scholar 

  77. Raman, V., Pitsch, H.: Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combust. Flame 142, 329–347 (2005)

    Article  Google Scholar 

  78. Richardson, E.S., Chen, J.H.: Application of PDF mixing models to premixed flames with differential diffusion. Combust. Flame 159, 2398–2414 (2012)

    Article  Google Scholar 

  79. Ruan, S., Swaminathan, N., Darbyshire, O.: Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation. Combust. Theor. Model. 18(2), 295–329 (2014)

    Article  MathSciNet  Google Scholar 

  80. Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst. 31, 1291–1298 (2007)

    Article  Google Scholar 

  81. Savard, B., Blanquart, G.: An a priori model for the effective species Lewis numbers in premixed turbulent flames. Combust. Flame 161, 1547–1557 (2014)

    Article  Google Scholar 

  82. Schuermans, B., Luebcke, H., Bajusz, D., Flohr, P.: Thermoacoustic analysis of gas turbine combustion systems using unsteady CFD. Proc. ASME 2, 287–297 (2005)

    Google Scholar 

  83. Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157, 384–396 (2010)

    Article  Google Scholar 

  84. Shi, Y., Green, W.H., Wong, H.W., Oluwole, O.O.: Redesigning combustion modeling algorithms for the graphics processing unit (GPU): Chemical kinetic rate evaluation and ordinary differential equation integration. Combust. Flame 158, 836–847 (2011)

    Article  Google Scholar 

  85. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  86. Sutherland, J.C., Parente, A.: Combustion modeling using principal component analysis. Proc. Combust. Inst. 32, 1563–1570 (2009)

    Article  Google Scholar 

  87. Sutherland, J.C., Smith, P.J., Chen, J.H.: A quantitative method for a priori evaluation of combustion reaction models. Combust. Theor. Model. 11, 287–303 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  88. Tanaka, S., Shimura, M., Fukushima, N., Tanahashi, M., Miyauchi, T.: DNS of turbulent swirling premixed flame in a micro gas turbine combustor. Proc. Combust. Inst. 33, 3293–3300 (2011)

    Article  Google Scholar 

  89. Thornber, B., Bilger, R.W., Masri, A.R., Hawkes, E.R.: An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230, 7687–7705 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  90. Trisjono, P., Kleinheinz, K., Hawkes, E.R., Pitsch, H.: Modeling turbulence–chemistry interaction in premixed flames with a strained flamelet model, Combust. Flame. Submitted (2014)

  91. Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H.: Large Eddy simulation of stratified and sheared flames of a premixed turbulent stratified flame burner using a Flamelet Model with Heat Loss. Flow Turbul. Combust. 92, 201–235 (2014)

    Article  Google Scholar 

  92. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 192–266 (2002)

    Article  Google Scholar 

  93. Vreman, A.W., van Oijen, J.A, de Goey, L.P.H., Bastiaans, R.J.M.: Subgrid scale modeling in large-Eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow Turbul. Combust. 82, 511–535 (2009)

    Article  MATH  Google Scholar 

  94. Yang, Y., Pope, S.B., Chen, J.H.: Empirical low-dimensional manifolds in composition space. Combust. Flame 160, 1967–1980 (2013)

    Article  Google Scholar 

  95. Yang, Y., Pope, S.B., Chen, J.H.: Large-eddy simulation/probability density function modeling of a non-premixed CO/H 2 temporally evolving jet flame. Proc. Combust. Inst. 34, 1241–1249 (2013)

    Article  Google Scholar 

  96. Yeung, P.K., Donzis, D.A., Sreenivasan, K.R.: Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 5–15 (2012)

    Article  MATH  Google Scholar 

  97. Yoo, C.S., Richardson, E.S., Sankaran, R., Chen, J.H.: A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst. 33, 1619–1627 (2011)

    Article  Google Scholar 

  98. Yoo, C.S., Sankaran, R., Chen, J.H.: Three–dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453–481 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Trisjono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trisjono, P., Pitsch, H. Systematic Analysis Strategies for the Development of Combustion Models from DNS: A Review. Flow Turbulence Combust 95, 231–259 (2015). https://doi.org/10.1007/s10494-015-9645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9645-x

Keywords

Navigation