Skip to main content
Log in

Simulation of Receptivity and Induced Transition From Discrete Roughness Elements

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Simulations have been carried out to predict the receptivity and growth of crossflow vortices created by Discrete Roughness Elements (DREs) The final transition to turbulence has also been examined, including the effect of DRE spacing and freestream turbulence. Measurements by Hunt and Saric (2011) of perturbation mode shape at various locations were used to validate the code in particular for the receptivity region. The WALE sub-grid stress (SGS) model was adopted for application to transitional flows, since it allows the SGS viscosity to vanish in laminar regions and in the innermost region of the boundary layer when transition begins. Simulations were carried out for two spanwise wavelengths: λ= 12mm (critical) and λ= 6mm (control) and for roughness heights (k) from 12 μm to 42 μm. The base flow considered was an ASU (67)-0315 aerofoil with 45 0 sweep at -2.9 0 incidence and with onset flow at a chord-based Reynolds number Re c= 2.4x10 6. For λ= 12mm results showed, in accord with the experimental data, that the disturbance amplitude growth rate was linear for k = 12 μm and 24 μm, but the growth rate was decreased for k = 36 μm Receptivity to λ= 6mm roughness showed equally good agreement with experiments, indicating that this mode disappeared after a short distance to be replaced by a critical wavelength mode. Analysis of the development of modal disturbance amplitudes with downstream distance showed regions of linear, non-linear, saturation, and secondary instability behaviour. Examination of breakdown to turbulence revealed two possible routes: the first was 2D-like transition (probably Tollmien-Schlichting waves even in the presence of crossflow vortices) when transition occurred beyond the pressure minimum; the second was a classical crossflow vortex secondary instability, leading to the formation of a turbulent wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flightpath 2050: Europe’s vision for aviation, High Level Group on Aviation Research (2011)

  2. Arnal, D., Archambaud, J.P.: Laminar-turbulent transition control: NLF, LFC, HLFC, Advances in Laminar-Turbulent Transition Modelling, VKI Lecture Series. Brussels, Belgium (2009)

  3. Green, J.E.: Laminar flow control – back to the future AIAA paper, 2008–3738 (2008)

  4. Poll, D.I.A.: Some observations of the transition process on the windward face of a long yawed cylinder. J. Fluid Mech. 150, 329–356 (1985)

    Article  Google Scholar 

  5. Saric, W.S., Reed, H.L., White, E.B.: Stability and transition of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 35, 413–440 (2003)

    Article  MathSciNet  Google Scholar 

  6. Radeztsky, R.H. Jr, Reibert, M.S., Saric, W.S.: Effect of isolated micron-sized roughness on transition in swept-wing flows. AIAA J. 37, 370–1377 (1999)

    Google Scholar 

  7. White, E.B., Saric, W.S.: Secondary instability of crossflow vortices. J. Fluid Mech. 525, 275–308 (2005)

    Article  MATH  Google Scholar 

  8. Dagenhart, J.R., Saric, W.S.: Crossflow stability and transition experiments in swept-wing flow. NASA TP 1999-209344 (1999)

  9. Saric, W.S., Carrillo, R.B., Reibert, M.S.: Leading edge roughness as a transition control mechanism. AIAA Paper, 98–0781 (1998)

  10. Carpenter, A.L., Saric, W.S., Reed, H.L.: Roughness receptivity in swept wing boundary layers – experiments. Int. Jnl. Eng. Syst. Modell. Simul. 2, 123–128 (2010)

    Google Scholar 

  11. Reibert, M.S., Saric, W.S., Carrillo, R.B., Chapman, K.L.: Experiments in non-linear saturation of stationary crossflow vortices in a swept-wing boundary layer. AIAA Paper, 96–0184 (1996)

  12. Borodoulin, V.I.I., Anov, A.V., Kachanov, Y.S., Roschektaev, A.O.: Receptivity coefficients at citation of crossflow waves by freestream vortices in the presence of surface roughness. J. Fluid Mech. 716, 487–527 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kurian, T., Fransson, J.H., Alfredsson, P.H.: Boundary layer receptivity to freestream turbulence and surface roughness over a swept flat plate. Phys. Fluids 23, 034107 (2011)

    Article  Google Scholar 

  14. Hunt, L.E.: Boundary layer receptivity to 3D roughness arrays on a swept wing. PhD Thesis, Texas A&M University, USA (2011)

    Google Scholar 

  15. Hunt, L.E., Saric, W.S.: Boundary layer receptivity of three-dimensional roughness arrays on a swept wing. AIAA Paper, 2011–3881 (2011)

  16. Carrillo, R.B.: Distributed roughness effects on stability and transition in swept-wing boundary layers. M. Sc. Thesis, Arizona State University, USA (1996)

    Google Scholar 

  17. Saric, W.S., Carpenter, A.L., Reed, H.L.: Passive control of transition on three-dimensional boundary layers with emphasis on discrete roughness elements. Phil. Trans. Ry. Soc. Lond. A 369, 1352–1364 (2011)

    Article  MATH  Google Scholar 

  18. Lovig, E.N., Downs, R.S., White, E.B.: Passive laminar flow control at low turbulence levels. AIAA J. 52, 1072–1075 (2014)

    Article  Google Scholar 

  19. Downs, R.S., White, E.B.: Freestream turbulence and the development of crossflow disturbances. J. Fluid Mech. 735, 347–380 (2013)

    Article  MATH  Google Scholar 

  20. Riedel, H., Sitzmann, M.: In–flight investigations of atmospheric turbulence. Aerosp. Sci. Technol. 2, 301–319 (1998)

  21. Reshotko, E., Saric, W.S., Nagib, H.M.: Flow quality issues for large wind tunnels, AIAA-97-0325

  22. Malik, M.R., Li, F., Choudhari, M.M., Chang, C.-L.: Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85–115 (1999)

    Article  MATH  Google Scholar 

  23. Li, F., Choudhari, M., Chang, C-F., Streett, C., Carpenter, M.: Computational modelling of roughness-based laminar control on a subsonic swept-wing. AIAA J. 49, 520–529 (2011)

    Article  Google Scholar 

  24. Haynes, T.S., Reed, H.L.: Simulation of swept-wing vortices using nonlinear parabolised stability equations. J. Fluid Mech. 305, 325–349 (2000)

    Article  Google Scholar 

  25. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.H., Voelker, S.: A correlation-based transition model using local variables: Part I – model formulation. ASME J. Turbomach. 128, 413–422 (2006)

    Article  Google Scholar 

  26. Wasserman, P., Kloker, M.: Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 485, 67–89 (2003)

    Article  Google Scholar 

  27. Wasserman, P., Kloker, M.: Transition mechanism in a 3D boundary layer with pressure gradient changeover. J. Fluid Mech. 530, 265–280 (2005)

    Article  MathSciNet  Google Scholar 

  28. Hosseini, S.M., Tempelmann, D., Hanifi, A., Henningson, D.S.: Stabilisation of a swept-wing boundary layer by distributed roughness elements. J. Fluid Mech. Rapids 718, R1 (2013)

    Article  MathSciNet  Google Scholar 

  29. Kurz, H.B.E., Kloker, M.K.: Receptivity of a swept-wing boundary layer to micron-sized discrete roughness elements. J. Fluid Mech. 755, 63–82 (2014)

    Article  Google Scholar 

  30. Schlatter, P.: Large Eddy Simulation of transition and turbulence in wall bounded shear flow. PhD thesis Swiss Federal Institute of Technology, Zurich (2005)

    Google Scholar 

  31. Sayadi, T., Moin, P.: Large Eddy Simulation of controlled transition to turbulence. Phys. Fluids 24, 114103 (2012)

    Article  Google Scholar 

  32. Huai, X., Joslin, R., Piomelli, U.: Large Eddy Simulation of boundary layer transition on a swept wedge. J. Fluid Mech. 381, 357–380 (1999)

    Article  MATH  Google Scholar 

  33. Bonfigli, G, Kloker, M., Wagner, S.: Three-dimensional boundary layer transition induced by superposed steady and travelling crossflow vortices. In: High Performance Computing in Science and Engineering 2002. Springer, Berlin/Heidelberg (2003)

  34. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction Springer Berlin/Heidelberg. Germany (1998)

  35. Smagorinsky, J.: General circulation experiments with the primitive equations - I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  36. Germano, M.N., Moin, P., Cabot, W.H.: A dynamic sub grid scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  37. Nicoud, F., Ducros, F.: Sub-grid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turb. Comb. 62, 183–200 (1999)

    Article  MATH  Google Scholar 

  38. Temmerman, L., Leschziner, M.A.: Large Eddy Simulation of separated flow in a streamwise periodic channel constriction. In: Proceedings of 2nd International Symposium on Turbulence and Shear Flow Phenomena, pp 393–404 (2002)

  39. Li, Q., Page, G.J., McGuirk, J.J.: Large Eddy Simulation of twin impinging jets in cross-flow. Aeronaut. J. 111, 195–206 (2007)

    Google Scholar 

  40. Afsar, M.Z., Hynes, T.P., Dowling, A.P., McMullan, W.A., Pokora, C, Page, G.J., McGuirk, J.J.: Jet noise: acoustic analogy informed by large eddy simulation. AIAA J. 48, 312–1325 (2010)

    Google Scholar 

  41. Page, G.J., McGuirk, J.J.: Large Eddy Simulation of a complete Harrier in ground effect. Aeronaut. J. 113, 99–106 (2009)

    Google Scholar 

  42. Mistry, V.I., Page, G.J., McGuirk, J.J.: Large Eddy Simulation of crossflow vortices on an infinite swept wing. AIAA Paper, 2012–2694 (2012)

  43. Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an aerofoil with trailing edge separation. AIAA J 21, 1525–1535 (1983)

    Article  MATH  Google Scholar 

  44. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic eddy method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27, 585–593 (2006)

    Article  Google Scholar 

  45. Jarrin, N., Prosser, R., Uribe, J.-C., Benhamadouche, S., Laurence, D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic eddy method. Int. J. Heat Fluid Flow 30, 435–442 (2009)

    Article  Google Scholar 

  46. Mistry, V.I.: Simulation and control of crossflow vortices. PhD Thesis, Loughborough University, UK (2014)

    Google Scholar 

  47. Tempelmann, D., Schrader, L.U., Hanifi, A., Brandt, L., Henningson, D.S.: Swept wing boundary-layer receptivity to localised surface roughness. J. Fluid Mech. 711, 516–544 (2011)

    Article  MathSciNet  Google Scholar 

  48. Piomelli, U., Balaras, P.: Wall layer models for large eddy simulations. Ann. Rev. Fluid Mech. 34, 349–374 (2002)

    Article  MathSciNet  Google Scholar 

  49. Jeong, E., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 85, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. McGuirk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistry, V.I., Page, G.J. & McGuirk, J.J. Simulation of Receptivity and Induced Transition From Discrete Roughness Elements. Flow Turbulence Combust 95, 301–334 (2015). https://doi.org/10.1007/s10494-015-9636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9636-y

Keywords

Navigation