Skip to main content
Log in

An SMLD Joint PDF Model for Turbulent Non-Premixed Combustion Using the Flamelet Progress-Variable Approach

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper provides an improved flamelet/progress variable (FPV) model for the simulation of turbulent combustion, employing the statistically most likely distribution (SMLD) approach for the joint probability density function (PDF) of the mixture fraction, Z, and of the progress parameter, Λ. Steady-state FPV models are built presuming the functional shape of the joint PDF of Z and Λ in order to evaluate Favre-averages of thermodynamic quantities. The mixture fraction is widely assumed to behave as a passive scalar with a mono-modal behaviour modelled by a β-distribution. Moreover, under the hypothesis that Z and Λ are statistically independent, the joint PDF coincides with the product of the two marginal PDFs. In this work we discuss these two constitutive hypotheses. The proposed model evaluates the most probable joint distribution of Z and Λ, relaxing some crucial assumption on their statistical behaviour. This provides a more general model in the context of FPV approach and an effective tool to verify the adequateness of widely used hypotheses. The model is validated versus experimental data of well-known test cases, namely, the Sandia flames. The results are also compared with those obtained by the standard FPV approach, analysing the role of the PDF functional form on turbulent combustion simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  2. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gicquel, O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)

    Article  Google Scholar 

  4. Oijen, J.V., De Goey, L.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  5. Ihme, M., Cha, C.M., Pitsch, H.: Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst. 30, 793–800 (2005)

    Article  Google Scholar 

  6. Peters, N.: Turbulent combustion. Cambridge University Press (2000)

  7. Pierce, C.D.: Progress-variable approach for large-eddy simulation of turbulent combustion. PhD Thesis, Stanford University (2001)

  8. Ihme, M., Pitsch, H.: Prediction of extinction and re-ignition in non-premixed turbulent flames using a flamelet progress variable model. 1 A priori study and presumed PDF. Combust. Flame 155, 70–89 (2008)

    Article  Google Scholar 

  9. Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231, 7715–7721 (2012)

    Article  Google Scholar 

  10. Najafi-Yazdi, A., Cuenot, B., Mongeau, L.: Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combust. Flame 159, 1197–1204 (2012)

    Article  Google Scholar 

  11. Niu, Y.-S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combust. Flame 160, 776–785 (2013)

    Article  Google Scholar 

  12. Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25(6), 595–687 (1999)

  13. Ihme, M., Pitsch, H.: Prediction of extinction and re-ignition in non-premixed turbulent flames using a flamelet progress variable model. 2 Application in LES of Sandia Flames D and E. Combust. Flame 155, 90–107 (2008)

  14. Meester, R.D., Naud, B., Merci, B.: A priori investigation of PDF-modeling assumptions for a turbulent swirling bluff body flame (SM1). Combust. Flame 159, 3353–3357 (2012)

    Article  Google Scholar 

  15. Mukhopadhyay, S., Abraham, J.: Evaluation of an unsteady flamelet progress variable model for autoignition and flame development in compositionally stratified mixtures. Phys. Fluids 24, 075–115 (2012)

    Article  Google Scholar 

  16. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  17. Pitsch, H., Peters, N.: A consistent flamelet formulation of non-premixed combustion considering differential diffusion effects. Combust. Flame 114, 317–332 (1998)

    Google Scholar 

  18. Pitsch, H., Chen, M., Peters, N.: Unsteady flamelet modelling of turbulent hydrogen/air diffusion flames. Proc. Combust. Inst. 27, 1057–1064 (1998)

    Article  Google Scholar 

  19. Kim, J.S., Williams, F.A.: Structures of flow and mixture-fraction fields for counterflow diffusion flames with small stoichiometric mixture fractions. J. Appl. Math. 53, 1551–1566 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  21. Cook, A.W., Riley, J.J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868–2870 (1994)

    Article  Google Scholar 

  22. Jimenez, J., Linan, A., Rogers, M.M., Higuera, F.J.: A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows. J. Fluid Mech. 349, 149–171 (1997)

    Article  MATH  Google Scholar 

  23. Wall, C., Boersma, B.J., Moin, P.: An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of non-premixed, turbulent combustion with heat release. Phys. Fluids 12, 2522–2529 (2000)

    Article  Google Scholar 

  24. Cha, C.M., Pitsch, H.: Higher-order conditional moment closure modelling of local extinction and reignition in turbulent combustion. Combust. Theory Model 6, 425–437 (2002)

    Article  Google Scholar 

  25. Heinz, S.: Statistical mechanics of turbulent flows. Springer-Verlag (2003)

  26. Shannon, C.H.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379,423 (1948)

    Article  MathSciNet  Google Scholar 

  27. Pope, S.B.: A rational method of determining probability distributions in turbulent reacting flows. J. Non-Equilib. Thermodyn. 4, 309–842 (1979)

    Article  MATH  Google Scholar 

  28. Cutrone, L., De Palma, P., Pascazio, G., Napolitano, M.: A RANS flamelet-progress-variable method for computing reacting flows of real-gas mixtures. Comput. Fluids 39, 485–498 (2010)

    Article  MATH  Google Scholar 

  29. Schwer, D.A.: Numerical study of unsteadiness in non-reacting and reacting mixing layers. PhD Thesis, The Pennsylvania State University (1999)

  30. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas-dynamic equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pulliam, T.H., Chaussee, D.S.: A diagonal form of an implicit factorization algorithm. J. Comput. Phys. 39, 347–363 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  32. Buelow, P.E.O., Schwer, D.A., Feng, J.-Z., Merkle, C.L., Choi, D.: A preconditioned dual time diagonalized ADI scheme for unsteady computations. In: AIAA Proceedings (1997)

  33. Menter, F., Rumsey, C.: Assessment of two-equation turbulence models for transonic flows. In: 25 th AIAA Fluid Dynamics Conference, AIAA, p 1994, Colorado Springs, CO

  34. Sandia National Laboratories: TNF Workshop. http://www.ca.sandia.gov/TNF

  35. Pitsch, H.: Flamemaster v3.3. a c++ computer program for 0d combustion and 1d laminar flame calculations

  36. Barlow, R., Frank, J.: Effects of turbulence on species mass fraction in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  37. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., Qin, Z.: http://www.me.berkeley.edu/gri_mech/ (2000)

  38. Ochoa, J., Snchez-Insa, A., Fueyo, N.: Subgrid linear eddy mixing and combustion modelling of a turbulent nonpremixed piloted jet flame. Flow Turbul. Combust. 89(2), 295–309 (2012)

    Article  MATH  Google Scholar 

  39. Zoller, B.T., Allegrini, J.M., Maas, U., Jenny, P.: PDF model for NO calculations with radiation and consistent NO-NO2 chemistry in non-premixed turbulent flames. Combust. Flame 158(8), 1591–1601 (2011)

    Article  Google Scholar 

  40. Kemenov, K.A., Pope, S.B.: Molecular diffusion effects in LES of a piloted methane-air flame. Combust. Flame 158(2), 240–254 (2011)

    Article  Google Scholar 

  41. Ferraris, S., Wen, J.: LES of the sandia flame D using laminar flamelet decomposition for conditional source-term estimation. Flow Turbul. Combust. 81(4), 609–639 (2008)

    Article  MATH  Google Scholar 

  42. Juddoo, M., Masri, A.R., Pope, S.B.: Turbulent piloted partially-premixed flames with varying levels of O2/N2: Stability limits and PDF calculations. Combust. Theor. Model. 15(6), 773–793 (2011). doi:10.1080/13647830.2011.563867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pascazio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coclite, A., Pascazio, G., De Palma, P. et al. An SMLD Joint PDF Model for Turbulent Non-Premixed Combustion Using the Flamelet Progress-Variable Approach. Flow Turbulence Combust 95, 97–119 (2015). https://doi.org/10.1007/s10494-015-9609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9609-1

Keywords

Navigation