Skip to main content
Log in

Experimental Investigation of the Log-Law for an Adverse Pressure Gradient Turbulent Boundary Layer Flow at Re θ  = 10000

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We present an experimental investigation of a turbulent boundary layer flow at a significant adverse pressure gradient at Reynolds number Re θ  = 10000 using large field PIV. The testcase is designed to start from a zero pressure gradient flow at Re θ  = 8000 with a distinct log-law region following a slowly rising adverse pressure gradient. This allows to reveal a breakdown of the log-law under the effect of the adverse pressure gradient. The region described by the log-law is progressively reduced in terms of y  +  and then joins into a modified log-law which gives a good fit to the data up to at least y/δ 99 ≈ 0.2. The scaling in the overlap region is demonstrated using the mean velocity slope diagnostic function, enabled due to the high quality of the PIV data. Locally, the velocity profile is measured down to the wall using long-range microscopic PIV with particle tracking velocimetry to determine the wall shear stress directly in the adverse pressure gradient region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alving, A.E., Fernholz, H.H.: Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids 7, 1956–1969 (1995)

    Article  Google Scholar 

  2. Bourassa, C., Thomas, F.O.: An experimental investigation of a highly accelerated turbulent boundary layer. J. Fluid Mech. 634, 359–404 (2009)

    Article  MATH  Google Scholar 

  3. Bradshaw, P.: Turbulence. Springer Topics in Applied Physics. Springer (1970)

  4. Brown, K.C., Joubert, P.N.: The measurement of skin friction in turbulent boundary layers with adverse pressure gradients. J. Fluid Mech. 35, 737–757 (1969)

    Article  Google Scholar 

  5. Chauhan, K.A., Monkewitz, P.A., Nagib, H.M.: Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dynam. Res. 41, 021404 (2009)

    Article  Google Scholar 

  6. Coles, D.E., Hirst, E.A.: The young person’s guide to the data. In: Computation of Turbulent Boundary Layers—1968 AFOSR-IFP-Stanford Conference, vol. II. Thermosciences Division, Department of Mechanical Engineering, Stanford University (1969)

  7. Dixit, S.A., Ramesh, O.N.: Pressure-gradient-dependent logarithmic laws in sink flow turbulent boundary layers. J. Fluid Mech. 615, 445–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dixit, S.A., Ramesh, O.N.: Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers. Exp. Fluids 47, 1045–1058 (2009)

    Article  Google Scholar 

  9. Dumitra, M., Schanz, D., Schröder, A., Kähler, C.J.: Large-scale turbulent boundary layer investigation with multiple camera PIV and hybrid evaluation up to single pixel resolution. In: 9th International Symposium on Particle Image Velocimetry. Kobe, Japan (2011)

  10. Hellstedt, K.A.: Streamwise Evolution of Turbulent Boundary Layers towards Equilibrium Conditions. Ph.D. thesis, University of Melbourne (2003)

  11. Huang, P.G., Bradshaw, P.: Law of the wall for turbulent flows in pressure gradients. AIAA J. 33, 624–632 (1995)

    Article  MATH  Google Scholar 

  12. Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52, 1629–1639 (2012a)

    Article  Google Scholar 

  13. Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012b)

    Article  Google Scholar 

  14. Knopp, T.: Entwurf eines Experimentes einer turbulenten Grenzschicht mit starkem Druckgradienten bei hohen Reynoldszahlen zur Entwicklung von Wandgesetzen bei Druckgradienten und zur Verbesserung von RANS Turbulenzmodellen. Technical report, DLR-IB 224-2011 C 106 (2011)

  15. Knopp, T., Schanz, D., Schröder, A., Dumitra, M., Kähler, C.J.: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at Re θ up to 10,000. In: Turbulence, Heat and Mass Transfer, vol. 7 (2012)

  16. Lee, J.-H., Sung, H.J.: Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101–131 (2009)

    Article  MATH  Google Scholar 

  17. Manhart, M., Friedrich, R.: Dns of a turbulent boundary layer with separation. Int. J. Heat Fluid Flow 23, 672–581 (2002)

    Article  Google Scholar 

  18. Marusic, I., Monty, J.P., Hultmark, M., Smits, A.J.: On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3–1–R3–11 (2012)

    MathSciNet  Google Scholar 

  19. McDonald, H.: The effect of pressure gradient on the law of the wall in turbulent flow. J. Fluid Mech. 35, 311–336 (1969)

    Article  Google Scholar 

  20. Monty, J.O.: Developments in Smooth Wall Turbulent duct Flows. Ph.D. thesis, University of Melbourne (2005)

  21. Monty, J.P., Harun, Z., Marusic, I.: A parametric study of adverse pressure gradient turbulent boundary layers. Int. J. Heat Fluid Flow 32, 575–585 (2011)

    Article  Google Scholar 

  22. Nagano, Y., Tagawa, M., Tsuji, T.: Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. In: 8th Symposium on Turbulent Shear Flows. Technical University of Munich (1991)

  23. Nagib, H.M., Chauhan, K.A.: Variations of von Karman coefficient in canonical flows. Phys. Fluids 20, 101518–1–10 (2008)

    Article  Google Scholar 

  24. Nickels, T.B.: Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ohmi, K., Li, H.Y.: Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11, 603–616 (2000)

    Article  Google Scholar 

  26. Örlü, R., Fransson, J.H.M., Alfredsson, P.H.: On near wall measurements of wall bounded flows—the necessity of an accurate determination of the wall position. Prog. Aerosp. Sci. 46, 353–387 (2010)

    Article  Google Scholar 

  27. Österlund, J.M., Johansson, A.V., Nagib, H.M., Hites, M.H.: A note on the overlap region in turbulent boundary layers. Phys. Fluids 12, 1–4 (2000)

    Article  MATH  Google Scholar 

  28. Perry, A.E., Schofield, W.H.: Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16, 2068–2074 (1973)

    Article  Google Scholar 

  29. Schofield, W.H.: Equilibrium boundary layers in moderate to strong adverse pressure gradient. J. Fluid Mech. 113, 91–122 (1981)

    Article  MATH  Google Scholar 

  30. Skare, P.E., Krogstad, P.A.: A turbulent equilibrium boundary layer near separation. J. Fluid Mech. 272, 319–348 (1994)

    Article  Google Scholar 

  31. Skote, A., Henningson, D.S.: Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107–136 (2002)

    Article  MATH  Google Scholar 

  32. Spalart, P.R., Coleman, G.N., Johnstone, R.: Retraction: “Direct numerical simulation of the Ekman layer: A step in Reynolds number, and cautious support for a log law with a shifted origin”. Phys. Fluids 21 (2008)

  33. Stratford, B.S.: The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5, 1–16 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  34. Szablewski, W.: Analyse von Messungen turbulenter Grenzschichten mittels der Wandgesetze. Ing.-Arch. 29, 291–300 (1960)

    Article  MATH  Google Scholar 

  35. Wei, T., Fife, P., Klewicki, J., McMurtry, P.: Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303–327 (2005a)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wei, T., Schmidt, R., McMurtry, P.: Comment on the clauser chart method for determining the friction velocity. Exp. Fluids 38, 695–699 (2005b)

    Article  Google Scholar 

  37. Zanoun, E.-S., Durst, F., Nagib, H.: Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids 15, 3079–3089 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Knopp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knopp, T., Schanz, D., Schröder, A. et al. Experimental Investigation of the Log-Law for an Adverse Pressure Gradient Turbulent Boundary Layer Flow at Re θ  = 10000. Flow Turbulence Combust 92, 451–471 (2014). https://doi.org/10.1007/s10494-013-9479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9479-3

Keywords

Navigation