Skip to main content

Advertisement

Log in

Large Eddy Simulation of Wind Turbine Wakes

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We present the coupling of a vortex particle-mesh method with immersed lifting lines for the Large Eddy Simulation of wind turbine wakes. The method relies on the Lagrangian discretization of the Navier–Stokes equations in vorticity-velocity formulation. Advection is handled by the particles while the mesh allows the evaluation of the differential operators and the use of fast Poisson solvers. We use a Fourier-based fast Poisson solver which simultaneously allows unbounded directions and inlet/outlet boundaries. The method also allows the feeding of a turbulent incoming flow. We apply this methodology to the study of large scale aerodynamics and wake behavior of tandem wind turbines. We analyze the generators performance, unsteady power, loads and aerodynamics they are subjected to. The average flow field of the wakes is also computed and turbulence statistics are extracted. In particular, we investigate the influence of the type of turbulent inflow used—precomputed or synthetic—, and study wake meandering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartholomew, R.W.: Velocity field estimates and three-dimensional discrete vortex methods. Comput. Methods Appl. Mech. Eng. 71(1), 15–29 (1988). URL: http://www.sciencedirect.com/science/article/B6V29-47YJHJS-1S/2/4a44d7a1849e47eb0069cf98c4fe8180

    Article  MathSciNet  MATH  Google Scholar 

  2. Borue, V., Orszag, S.A.: Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 1–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calaf, M., Meneveau, C., Meyers, J.: Large Eddy Simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110 (16 pp.) (2010)

    Article  Google Scholar 

  4. Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Eng. 197(13), 1296–1304 (2008)

    Article  MATH  Google Scholar 

  5. Chatelain, P., Koumoutsakos, P.: A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions. J. Comput. Phys. 229(7), 2425–2431 (2010). URL: http://www.sciencedirect.com/science/article/B6WHY-4Y4R4GD-1/2/1cf355678ffad889ad409f181e47840d

    Article  MathSciNet  MATH  Google Scholar 

  6. Churchfield, M.J., Kern, S.: A comparison of vortex particle, lifting line and finite volume, actuator line wind turbine rotor aerodynamics simulations. Tech. Rep., NREL (forthcoming)

  7. Cocle, R., Winckelmans, G., Daeninck, G.: Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227(21), 9091–9120 (2008). doi:10.1016/j.jcp.2007.10.010

    Article  MathSciNet  MATH  Google Scholar 

  8. Cocle, R., Bricteux, L., Winckelmans, G.: Scale dependence and asymptotic very high reynolds number spectral behavior of multiscale subgrid models. Phys. Fluids 21(8), 085101 (2009). doi:10.1063/1.3194302

    Article  Google Scholar 

  9. Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor & Francis, Inc. Bristol, USA (1988)

    Book  MATH  Google Scholar 

  10. Ivanell, S., Sorensen, J.N., Mikkelsen, R., Henningson, D.: Analysis of numerically generated wake structures. Wind Energy 12(1), 63–80 (2009). doi:10.1002/we.285

    Article  Google Scholar 

  11. Jeanmart, H., Winckelmans, G.: Investigation of eddy-viscosity models modified using discrete filters: a simplified “regularized variational multiscale model” and an “enhanced field model”. Phys. Fluids 19(5), 055110 (2007)

    Article  Google Scholar 

  12. Koumoutsakos, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid. Mech. 296(1), 1–38 (1995)

    Article  MATH  Google Scholar 

  13. Larsen, J.W., Nielsen, S.R.K., Krenk, S.: Dynamic stall model for wind turbine airfoils. J. Fluids Struct. 23(7), 959–982 (2007). doi:10.1016/j.jfluidstructs.2007.02.005. URL: http://www.sciencedirect.com/science/article/pii/S0889974607000291

    Article  Google Scholar 

  14. Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141–168 (1994)

    Article  MATH  Google Scholar 

  15. Mansfield, J.R., Knio, O.M., Meneveau, C.: Dynamic les of colliding vortex rings using a 3d vortex method (vol. 152, pp. 305, 1999). J. Comput. Phys. 197(2), 779–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masson, C., Ammara, I., Paraschivoiu, I.: An aerodynamic method for the analysis of isolated horizontal-axis wind turbines. Int. J. Rot. Mach. 3(1), 21–32 (1997). doi:10.1155/S1023621X97000031

    Article  Google Scholar 

  17. Méchali, M., Barthelmie, R., Frandsen, S., Jensen, L., Réthoré, P.E.: Wake effects at Horns Rev and Nysted and their influence on energy production. In: European Wind Energy Conference EWEC. European Wind Energy Association EWEA (2006)

  18. Meyers, J., Meneveau, C.: Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 15, 305–17 (2012)

    Article  Google Scholar 

  19. Øye, S.: Dynamic stall simulated as time lag of separation. Technical report, Department of Fluid Mechanics, Technical University of Denmark (1991)

  20. Sbalzarini, I.F., Walther, J.H., Polasek, B., Chatelain, P., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: A software framework for the portable parallelization of particle-mesh simulations. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006 Parallel Processing. LNCS, vol. 4128, pp. 730–739 (2006)

  21. Schmitz, S., Chattot, J.J.: A coupled Navier–Stokes/vortex-panel solver for the numerical analysis of wind turbines. Comput. Fluids 35(7), 742–745 (2006). URL: http://www.sciencedirect.com/science/article/B6V26-4JCSJYP-1/2/4e3cdcf9b5105f831244a7344302393f

    Article  MATH  Google Scholar 

  22. Sørensen, J.N., Kock, C.W.: A model for unsteady rotor aerodynamics. J. Wind Eng. Ind. Aerodyn. 58(3), 259–275 (1995). doi:10.1016/0167-6105(95)00027-5. URL: http://www.sciencedirect.com/science/article/pii/0167610595000275

    Article  Google Scholar 

  23. Sørensen, J.N., Myken, A.: Unsteady actuator disc model for horizontal axis wind turbines. J. Wind Eng. Ind. Aerodyn. 39(1–3), 139–149 (1992). doi:10.1016/0167-6105(92)90540-Q. URL: http://www.sciencedirect.com/science/article/pii/016761059290540Q

    Article  Google Scholar 

  24. Sorensen, J.N., Shen, W.Z.: Numerical modeling of wind turbine wakes. J. Fluids Eng.—Trans. ASME 124(2), 393–399 (2002). doi:10.1115/1.1471361

    Article  Google Scholar 

  25. Sumner, J., Espana, G., Masson, C., Aubrun, S.: Evaluation of rans/actuator disk modelling of wind turbine wake flow using wind tunnel measurements. Int. J. Eng. Syst. Model. Simul. 5(1–3), 147–158 (2013). doi:10.1504/IJESMS.2013.052382

    Google Scholar 

  26. Türk, M., Emeis, S.: The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 98(8–9), 466–471 (2010). doi:10.1016/j.jweia.2010.02.005. URL: http://www.sciencedirect.com/science/article/pii/S0167610510000279

    Article  Google Scholar 

  27. van Rees, W.M., Leonard, A., Pullin, D.I., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high reynolds numbers. J. Comput. Phys. 230(8), 2794–2805 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Winckelmans, G.: Vortex methods. In: Stein, E., De Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, vol. 3. Wiley, New York (2004)

    Google Scholar 

  29. Wu, J.Z., Wu, J.M.: Vorticity dynamics on boundaries. In: Hutchinson, J.W., Wu, T.Y. (eds.) Advances in Applied Mechanics, vol. 32, pp. 119–275. Academic, New York (1996). URL: http://www.sciencedirect.com/science/article/pii/S0065215608700772

    Google Scholar 

  30. Wu, J.Z., Lu, X.Y., Denny, A.G., Fan, M., Wu, J.M.: Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 21–58 (1998). doi:10.1017/S0022112098002055. URL: http://journals.cambridge.org/article_S0022112098002055

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Chatelain.

Additional information

Submitted for FTC Special Issue ETMM9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatelain, P., Backaert, S., Winckelmans, G. et al. Large Eddy Simulation of Wind Turbine Wakes. Flow Turbulence Combust 91, 587–605 (2013). https://doi.org/10.1007/s10494-013-9474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9474-8

Keywords

Navigation