Skip to main content
Log in

Leray-α Regularization of the Smagorinsky-Closed Filtered Equations for Turbulent Jets at High Reynolds Numbers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The article reports on blending of the Leray-α regularization with the conventional Smagorinsky subgrid-scale closure as an option for large-eddy-simulation of turbulent flows at very high Reynolds number on coarse meshes. The model has been tested in the self-similar far-field region of a jet at a range of Reynolds numbers spanning over two decades (4×103, 4×104 and 4×105) on two very coarse meshes of 2×105 and 3×104 mesh cells. The results are compared with the well-resolved DNS for \(Re_D=4\times 10^3\) on 15 million cells and experimental data for higher Re numbers. While the pure Leray-α can fail badly at high Re numbers on very coarse meshes, a blending of the two strategies by adding a small amount of extra-dissipation performs well even at a huge jet Reynolds number of \(Re_D=4\times 10^5\) on a very coarse mesh (2×105 cells), despite the ratio of the typical mesh spacing to the Kolmogorov length exceeding 300. It is found that the main prerequisite for successful LES, both for the classic Smagorinsky and the blended Leray-α/Smagorinsky model, is to resolve the shear-length \(L_s=\sqrt{\varepsilon/{\cal S}^3}\) (where \({\cal S}\) is the shear-rate modulus), defined by the constraint Δ/L s  < 1, where Δ is the typical mesh-cell size. For the mixed Leray-α/Smagorinsky model the regularization parameter should also be related to the shear-length rather than the local mesh size or Reynolds number, for which we propose a guide criterion α = 0.15÷0.3 L s .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28(1), 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  2. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32(1):1–32 (2000)

    Article  MathSciNet  Google Scholar 

  3. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  5. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A Fluid Dyn. 3, 1760 (1991)

    Article  MATH  Google Scholar 

  6. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670 (2004)

    Article  Google Scholar 

  7. Schlatter, P., Stolz, S., Kleiser, L.: Les of transitional flows using the approximate deconvolution model. Int. J. Heat Fluid Flow 25(3), 549–558 (2004)

    Article  Google Scholar 

  8. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid-scale models for large-eddy simulation. In: AIAA, Fluid and Plasma Dynamics Conference 13, vol. 1 (1980)

  9. Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699 (1999)

    Article  MATH  Google Scholar 

  10. Domaradzki, J.A.: Large eddy simulations without explicit eddy viscosity models. Int. J. Comput. Fluid Dyn. 24(10), 435–447 (2010)

    Article  MathSciNet  Google Scholar 

  11. Lesieur, M., Métais, O.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 28(1), 45–82 (1996)

    Article  Google Scholar 

  12. Geurts, B.J., Holm, D.D.: Regularization modeling for large-eddy simulation. Phys. Fluids 15, L13 (2003)

    Article  MathSciNet  Google Scholar 

  13. Geurts, B.J., Holm, D.D.: Leray and lans-α modelling of turbulent mixing. J. Turbul. 7, N10 (2006)

    Article  MathSciNet  Google Scholar 

  14. Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a leray–α model of turbulence. Proc. R. Soc. A, Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)

    MathSciNet  Google Scholar 

  15. Graham, J.P., Holm, D.D., Mininni, P.D., Pouquet, A.: Highly turbulent solutions of the lagrangian-averaged navier-stokes α model and their large-eddy-simulation potential. Phys. Rev. E 76(5), 056310 (2007)

    Article  MathSciNet  Google Scholar 

  16. Van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K.: Incompressibility of the leray-α model for wall-bounded flows. Phys. Fluids 18, 018103 (2006)

    Article  MathSciNet  Google Scholar 

  17. Verstappen, R.: On restraining the production of small scales of motion in a turbulent channel flow. Comput. Fluids 37(7), 887–897 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K.: Leray-α simulations of wall-bounded turbulent flows. Int. J. Heat Fluid Flow 30(6), 1044–1053 (2009)

    Article  Google Scholar 

  19. Foias, C., Holm, D.D., Titi, E.S.: The navier-stokes-α model of fluid turbulence. Physica D 152, 505–519 (2001)

    Article  MathSciNet  Google Scholar 

  20. Lipari, G., Stansby, P.K.: Review of experimental data on incompressible turbulent round jets. Flow Turbul. Combust. 86(1), 79–114 (2011)

    Article  Google Scholar 

  21. Picano, F., Casciola, C.M.: Small scale isotropy and universality of axisymmetric jets. Phys. Fluids 19(11), 118106 (2007)

    Article  Google Scholar 

  22. Picano, F., Sardina, G., Gualtieri, P., Casciola, C.M.: Anomalous memory effects on transport of inertial particles in turbulent jets. Phys. Fluids 22, 051705 (2010)

    Article  Google Scholar 

  23. Picano, F., Sardina, G., Casciola, C.M.: Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093305 (2009)

    Article  Google Scholar 

  24. Ko, N.W.M., Chan, W.T.: Similarity in the initial region of annular jets: three configurations. J. Fluid Mech. 84, 641 (1978)

    Article  Google Scholar 

  25. Boersma, B.J., Brethouwer, G., Nieuwstadt, F.T.M.: A numerical investigation on the effect of inflow conditions on the self-similar region of a round jet. Phys. Fluids 10(4), 899 (1998)

    Article  Google Scholar 

  26. Panchapakesan, N.R., Lumley, J.L.: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197 (1993)

    Article  Google Scholar 

  27. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-reynolds-number momentum-conserving, axisymmetric turbulent jet. J. Fluid Mech. 258, 31 (1994)

    Article  Google Scholar 

  28. George, W.K.: Self-preservation of turbulent flows and its relation to initial conditions and turbulent structures. In: Advances in Turbulence, p. 39. Hemisphere, New York (1989)

    Google Scholar 

  29. Canuto, V.M., Cheng, Y.: Determination of the smagorinsky–lilly constant c. Phys. Fluids 9, 1368–1378 (1997)

    Article  Google Scholar 

  30. Meyers, J., Sagaut, P.: On the model coefficients for the standard and the variational multi-scale smagorinsky model. J. Fluid Mech. 569(1), 287–319 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14, L41 (2002)

    Article  Google Scholar 

  32. Gualtieri, P., Casciola, C.M., Benzi, R., Piva, R.: Preservation of statistical properties in large-eddy simulation of shear turbulence. J. Fluid Mech. 592, 471–494 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Picano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picano, F., Hanjalić, K. Leray-α Regularization of the Smagorinsky-Closed Filtered Equations for Turbulent Jets at High Reynolds Numbers. Flow Turbulence Combust 89, 627–650 (2012). https://doi.org/10.1007/s10494-012-9413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9413-0

Keywords

Navigation