Skip to main content
Log in

Numerical Simulation of Single-Stream Jets from a Serrated Nozzle

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Hybrid large-eddy type simulations for cold jet flows from a serrated nozzle are performed at an acoustic Mach number Ma ac  = 0.9 and Re = 1.03×106. Since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES) or implicit LES (ILES) reminiscent procedure. To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended to the LES making a hybrid RANS-ILES. The geometric complexity of the serrated nozzle is fully considered without simplification or emulation. An improved but still modest hexahedral multi-block grid with circa 20 million grid points (with respect to 12.5 million in Xia et al., Int J Heat Fluid Flow 30:1067–1079, 2009) is used. Despite the modest grid size, encouraging and improved results are obtained. Directly resolved mean and second-order fluctuating quantities along the jet centerline and in the jet shear layer compare favorably with measurements. The radiated far-field sound predicted using the Ffowcs Williams and Hawkings (FW-H) surface integral method shows good agreement with the measurements in directivity and sound spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, S.F., Lyubimov, D.A., Maslov, V.P., Secundov, A.N.: Noise prediction for chevron nozzle flows. AIAA Paper 2006–2600 (2006)

  2. Bodony, D., Lele, S.K.: Current status of jet noise predictions using large-eddy simulation. AIAA J. 46, 364–380 (2005)

    Article  Google Scholar 

  3. Bogey, C., Bailly, C.: Effects of inflow conditions and forcing on subsonic jet flows and noise. AIAA J. 43, 1000–1007 (2005)

    Article  Google Scholar 

  4. Bridges, J., Brown, C.: Parametric testing of chevrons on single flow hot jets. NASA/TM 2004-213107 (2004)

  5. Bui, T.: A parallel, finite-volume algorithm for large-eddy simulation of turbulent flows. NASA/TM 1999–206570 (1999)

  6. Ciardi, M., Sagaut, P., Klein, M., Dawes, W.N.: A dynamic finite volume scheme for large-eddy simulation on unstructured grids. J. Comput. Phys. 210, 632–655 (2005)

    Article  MATH  Google Scholar 

  7. Davies, P., Fisher, M.J., Barratt, M.J.: The characteristics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15, 337–367 (1963)

    Article  MATH  Google Scholar 

  8. Di Francescantonio, P.: New boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202, 491–509 (1997)

    Article  Google Scholar 

  9. Engblom, W.A., Khavaran, A., Bridges, J.: Numerical prediction of chevron nozzle noise reduction using WIND-MGBK methodology. AIAA Paper 2004–2979 (2004)

  10. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generated by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. A A264, 321–342 (1969)

    Article  Google Scholar 

  11. Freund, J.B., Lele, S.K., Moin, P.: Calculation of the radiated sound field using an open Kirchhoff surface. AIAA J. 34, 909–916 (1996)

    Article  MATH  Google Scholar 

  12. Grinstein, F.F., Fureby, C.: Recent progress on MILES for high reynolds number flows. ASME J. Fluids Eng. 124, 848–861 (2002)

    Article  Google Scholar 

  13. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karabasov, S.A., Xia, H., Graham, O., Hynes, T.P., Tucker, P.G., Dowling, A.P.: Low-order modeling for chevron jet noise based on LES data. AAIA Paper 2010–08 (2010)

  15. Kenzakowski, D.C., Shipman, J., Dash, S.M.: Study of three-stream laboratory jets with passive mixing enhancements for noise reduction. AIAA Paper 2000–0129 (2000)

  16. Liu, Y., Tucker, P.G., Kerr, R.M.: Linear and non-linear large-eddy simulations of a plane jet. Comput. Fluids 37, 439–449 (2008)

    Article  Google Scholar 

  17. Mary, I., Sagaut, P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002)

    Article  Google Scholar 

  18. Massey, S.J., Elmiligui, A.A., Hunter, C.A., Thomas, R.H., Pao, S.P., Mengle, V.G.: Computational analysis of a chevron nozzle uniquely tailored for propulsion airframe aeroacoustics. AIAA Paper 2006–2436 (2006)

  19. McColgan, C., Larson, R.: Mean velocity, turbulence intensity and turbulence convection velocity measurements for a convergent nozzle in a free jet wind tunnel. NASA/CR 2949 (1978)

  20. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saiyed, N.: Separate flow nozzle test status meeting. NASA/TM 1997–210524 (1997)

  22. Saiyed, N., Mikkelsen, K.L., Bridges, J.: Acoustics and thrust of separate-flow exhaust nozzles with mixing devices for high-bypass-ratio engines. NASA/TM 2000–209948 (2000)

  23. Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise prediction for increasingly complex jets, Part I: Methods and tests. Int. J. Aeroacous. 4, 213–246 (2005)

    Article  Google Scholar 

  24. Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise prediction for increasingly complex jets, Part II: Applications. Int. J. Aeroacous. 4, 247–266 (2005)

    Article  Google Scholar 

  25. Shur, M.L., Spalart, P.R., Strelets, M.K., Garbaruk, A.V.: Further steps in LES-based noise prediction for complex jets. AIAA Paper 2006–485 (2006)

  26. Shur, M.L., Spalart, P.R., Strelets, M.K., K., T.A.: Towards the prediction of noise from jet engines. Int. J. Heat Fluid Flow 24, 551–561 (2003)

    Article  Google Scholar 

  27. Tam, C.K.W., Auriault, L.: Jet mixing noise from fine-scale turbulence. AIAA J. 37, 145–153 (1999)

    Article  Google Scholar 

  28. Tanna, H.K.: An experimental study of jet noise: Part I turbulent mixing noise. J. Sound Vib. 50, 405–428 (1977)

    Article  Google Scholar 

  29. Thomas, R.H., Kinzie, K.W., Pao, S.P.: Computational analysis of a pylon-chevron core nozzle interaction. AIAA Paper 2001–2185 (2001)

  30. Tucker, P.G.: Novel MILES computations for jet flows and noise. Int. J. Heat Fluid Flow 25, 625–635 (2004)

    Article  Google Scholar 

  31. Tucker, P.G., Davidson, L.: Zonal k − l based large eddy simulations. Comput. Fluids 33, 267–287 (2003)

    Article  Google Scholar 

  32. Tucker, P.G., Rumsey, C.L., Spalart, P.R., Bartels, R.E., Biedron, R.T.: Computation of wall distances based on differential equations. AIAA J. 43, 539–549 (2005)

    Article  Google Scholar 

  33. Uzun, A., Hussaini, M.Y.: Simulation of noise generation in the near-nozzle region of a chevron nozzle jet. AAIA J. 47, 1793–1810 (2009)

    Article  Google Scholar 

  34. Xia, H.: Dynamic Grid Detach-Eddy Simulation for Synthetic Jet Flows. Ph.D. thesis, The University of Sheffield (2005)

  35. Xia, H., Tucker, P.G.: Finite volume distance field and its application to medial axis transforms. Int. J. Numer. Methods Engng. 82, 114–134 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Xia, H., Tucker, P.G., Dawes, W.N.: Level sets for CFD in aerospace engineering. Prog. Aero. Sci. 46, 274–283 (2010)

    Article  Google Scholar 

  37. Xia, H., Tucker, P.G., Eastwood, S.: Towards jet flow LES of conceptual nozzles for acoustic predictions. AAIA Paper 2008–10 (2008)

  38. Xia, H., Tucker, P.G., Eastwood, S.: Large-eddy simulations of chevron jet flows with noise predictions. Int. J. Heat Fluid Flow 30, 1067–1079 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, H., Tucker, P.G. Numerical Simulation of Single-Stream Jets from a Serrated Nozzle. Flow Turbulence Combust 88, 3–18 (2012). https://doi.org/10.1007/s10494-011-9377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9377-5

Keywords

Navigation