Skip to main content
Log in

Differential Diffusion Modelling in LES with RCCE-Reduced Chemistry

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present work shows results obtained from the incorporation of a soot model into a combined Large Eddy Simulation and Conditional Moment Closure approach to modelling turbulent non-premixed flames. Soot formation is determined via the solution of two transport equations for soot mass fraction and particle number density, where acetylene is employed as the incipient species responsible for soot nucleation. The concentrations of the gaseous species are calculated using a Rate-Controlled Constrain Equilibrium approach to reduce the number of species to solve from a detailed gas-phase kinetic scheme involving 63 species. The study focuses on the influence of differential diffusion of soot particles on soot volume fraction predictions. The results of calculations are compared with experimental data for atmospheric methane flames, Overall, the study demonstrates that the model, when used in conjunction with a representation of differential diffusion effects, is capable of predicting soot formation at a fundamental level in the turbulent non- premixed flames considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kollmann, W., Kennedy, I.M., Metternich, M., Chen, J.Y.: Soot Formation in Combustion. Springer, Heilderberg (1984)

    Google Scholar 

  2. Leung, K., Lindstedt, R.P., Jones, W.P.: A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87(3–4), 289–305 (1991)

    Article  Google Scholar 

  3. Kronenburg, A., Bilger, R.W., Kent, J.H.: Modelling soot formation in turbulent methane-air jet diffusion flames. Combust. Flame 121, 24–40 (2000)

    Article  Google Scholar 

  4. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–688 (1999)

    Article  Google Scholar 

  5. Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)

    Article  Google Scholar 

  6. Paul, S.C., Paul, M.C., Jones, W.P.: Les for soot formation in a propane-air turbulent flame. In: Proceedings of the 5th Joint ASME/JSME Fluid Engineering Conference, San Diego, California, USA (2007)

  7. Raman, V., Mueller, M., Blanquart, G., Pitsch, H.: LES/PDF modeling of soot evolution in turbulent flames. In: APS Meeting Abstracts, pp. A2+ (2009)

  8. El-Asrag, H., Lu, T., Law, C., Menon, S.: Simulation of soot formation in turbulent premixed flames. Combust. Flame 150(1–2), 108–126 (2007)

    Article  Google Scholar 

  9. El-Asrag, H., Menon, S.: Large Eddy Simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame 156(2), 385–395 (2009)

    Article  Google Scholar 

  10. Doom, J., Oefelein, J.: Simulation of an ethylene-air jet flame with soot and radiation modeling. In: APS Meeting Abstracts, pp. A3+ (2009)

  11. Shaddix, C.R., Zhang, J., Scheffer, W., Doom, J., Oefelein, J.C., Kook, S., Pickett, L.M., Wang, H.: Understanding and predicting soot generation in turbulent non-premixed jet flames. Sand2010-7178, Sandia Report (2010)

  12. Keck, J.C., Gillespie, D.: Rate-controlled partial equilibrium method for treating reacting gas mixtures. Combust. Flame 17(2), 237–241 (1971)

    Article  Google Scholar 

  13. Jones, W.P., Rigopoulos, S., Smith, S., Maas, U.: Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30(1), 1325–1331 (2003)

    Article  Google Scholar 

  14. Jones, W.P., Rigopoulos, S.: Reduced chemistry for hydrogen and methanol premixed flames via rcce. Combust. Theor. Model. 11(5), 755–780 (2007)

    Article  MATH  Google Scholar 

  15. Rigopoulos, S., Lovas, T.: A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames. Proc. Combust. Inst. 32(1), 569–576 (2009)

    Article  Google Scholar 

  16. Løvås, T., Navarro-Martinez, S., Rigopoulos, S.: On adaptively reduced chemistry in Large Eddy Simulations. Proc. Combust. Inst. 33(1), 1339–1346 (2011)

    Article  Google Scholar 

  17. Navarro-Martinez, S., Rigopoulos, S.: Large Eddy Simulation of a turbulent lifted flame using conditional moment closure and rate-controlled constrained equilibrium. Flow Turbulence Combust. 87, 407–423 (2011).

    Article  MATH  Google Scholar 

  18. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  19. Piomelli, U., Liu, J.: Large Eddy Simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4), 893–848 (1995)

    Article  Google Scholar 

  20. Schmidt, H., Schumann, U.: Coherent structure of the convective boundary layer derived from Large Eddy Simulation. J. Fluid Mech. 200, 511–562 (1989)

    Article  MATH  Google Scholar 

  21. Pitsch, H., Steiner, H.: Large-Eddy Simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)

    Article  Google Scholar 

  22. Navarro-Martinez, S., Kronenburg, A., di Mare, F.: Conditional moment closure for Large Eddy Simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  MATH  Google Scholar 

  23. Branley, N., Jones, W.P.: Large Eddy Simulation of a turbulent non-premixed flame. Combust. Flame 127(1–2), 1914–1934 (2001)

    Article  Google Scholar 

  24. di Mare, F., Jones, W.P., Menzies, K.: Large Eddy Simulation of a model gas turbine combustor. Combust. Flame 137(1–2), 278–294 (2004)

    Article  Google Scholar 

  25. Beji, T., Zhang, J., Yao, W., Delichatsios, M.: On the limitations of constant prandtl and schmidt numbers assumption in les simulations of reacting buoyant plumes. In: CD-Rom Proceedings. European Combustion Meeting, Vienna (2009)

    Google Scholar 

  26. Pierce, C.D., Moin, P.: A dynamic model for subgrid variance and dissipation rate of a conserved scalar. Phys. Fluids. 10(12), 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jimenez, C., Ducros, F., Cuenot, B., Bedat, B.: Subgrid scale variance and dissipation of a scalar field in Large Eddy Simulations. Phys. Fluids 13(6), 1748–1754 (2001)

    Article  Google Scholar 

  28. Triantafyllidis, A., Mastorakos, E.: Implementation issues of the conditional moment closure model in Large Eddy Simulations. Flow Turbulence Combust. 84(3), 481–512 (2009)

    Article  Google Scholar 

  29. Bushe, K., Steiner, H.: Conditional moment closure for Large Eddy Simulation of non-premixed turbulent reacting flows. Phys. Fluids A 11, 1896–1906 (1999)

    Article  MATH  Google Scholar 

  30. Hewson, J.C., Ricks, A.J., Tieszen, S.R., Kerstein, A.R., Fox, R.O.: Conditional-moment closure with differential diffusion for soot evolution in fire. Tech. rep., Centre for Turbulence Research (2006)

  31. Lignell, D., Hewson, J., Chen, J.: A-priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using direct numerical simulation. Proc. Combust. Inst. 32(1), 1491–1498 (2009)

    Article  Google Scholar 

  32. Devaud, C.B., Bray, K.N.C.: Assessment of the applicability of conditional moment closure to a lifted turbulent flame: first order model. Combust. Flame 132(4), 102–114 (2003)

    Article  Google Scholar 

  33. Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a methane lifted flame. Proc. Combust. Inst. 32, 1509–1516 (2009)

    Article  Google Scholar 

  34. Stanković, I., Triantafyllidis, A., Mastorakos, E., Lacor, C., Merci, B.: Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach. Flow Turbulence Combust. 86, 689–710 (2011)

    Article  MATH  Google Scholar 

  35. Navarro-Martinez, S., Kronenburg, A.: Flame stabilization mechanisms in lifted flames. Flow Turbulence Combust. 87, 377–406 (2011)

    Article  MATH  Google Scholar 

  36. Kronenburg, A., Bilger, R.W.: Modelling differential diffusion in nonpremixed reacting turbulent flow: model development. Combust. Sci. Technol. 166(1), 195–227 (2001)

    Article  Google Scholar 

  37. Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114(1–2), 26–40 (1998)

    Article  Google Scholar 

  38. O’Brien, E., Jiang, T.L.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids 3, 3121–3123 (1991)

    Article  MATH  Google Scholar 

  39. Lindstedt, R.P.: Simplified reaction mechanism for soot formation in non-premixed flames. In: Bockhorn, H. (ed.) Mechanisms and Models of Soot Formations, English edn., pp. 417–441. Springer, Berlin (1994)

    Google Scholar 

  40. Pitsch, H., Riesmeier, E., Peters, N.: Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust. Sci. Technol. 158, 389–406 (2000)

    Article  Google Scholar 

  41. Carbonell, D., Oliva, A., Perez-Segarra, C.D.: Implementation of two-equation soot flamelet models for laminar diffusion flames. Combust. Flame 156(3), 621–632 (2009)

    Article  Google Scholar 

  42. Beji, T., Zhang, J., Yao, W., Delichatsios, M.: A novel soot model for fires: validation in a laminar non-premixed flame. Combust. Flame 158(2), 281–290 (2011)

    Article  Google Scholar 

  43. Brookes, S.J., Moss, J.B.: Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane. Combust. Flame 116, 49–61 (1999)

    Article  Google Scholar 

  44. Grosshandler, W.L.: Radcal: a narrow-band model for radiation calculations in a combustion environment. Tech. rep., NIST Report (1993)

  45. Marracino, B., Lentini, D.: Radiation modelling in non-luminous nonpremixed turbulent flames. Combust. Sci. Technol. 128(1), 23–48 (1997)

    Article  Google Scholar 

  46. Woolley, R.M., Fairweather, M., Yunardi: Conditional moment closure modeling of soot formation in turbulent non-premixed methane and propane flames. Fuel 88, 393–407 (2009)

    Article  Google Scholar 

  47. Hall, R.J.: Computation of the radiative power loss in a sooting diffusion flame. Appl. Optics 27, 809–811 (1988)

    Article  Google Scholar 

  48. Web page of the international workshop on measurement and computation of turbulent non-premixed flames. http://www.ca.sandia.gov/tdf/workshop.html (TNF) (1998)

  49. Yanenko, N.N.: The Method of Fractional Steps, English edn. Springer, New York (1971)

    Book  Google Scholar 

  50. Malik, N., Løvås, T., Mauss, F.: The effect of preferential diffusion on the soot initiation process in ethylene diffusion flames. Flow Turbulence Combust. 87, 293–312 (2011).

    Article  MATH  Google Scholar 

  51. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. In: Classics in Applied Mathematics. SIAM, Philadelphia (1996)

    Google Scholar 

  52. Sick, V., Hildenbrand, F., Lindstedt, R.P.: Quantitative laser-based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane-air counterflow diffusion flames. Proc. Combust. Inst. 27(1), 1401–1409 (1998)

    Google Scholar 

  53. Roditcheva, O.V., Bai, X.S.: Pressure effect on soot formation in turbulent diffusion flames. Chemosphere 42, 811–821 (2001)

    Article  Google Scholar 

  54. Kim, H.J., Kim, Y.M.: Numerical modeling for combustion and soot formation processes in turbulent diffusion flames. KSME Int. J. 16(1), 116–124 (2001)

    Google Scholar 

  55. Jones, W.P., di Mare, F., Marquis, A.J.: LES-BOFFIN: user’s guide. Technical Memorandum, Imperial College, London (2002)

  56. Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  MATH  Google Scholar 

  57. Pitsch, H., Riesmeier, E., Peters, N.: Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust. Sci. Technol. 158(1), 389–406 (2000)

    Article  Google Scholar 

  58. Lignell, D.O., Chen, J.H., Smith, P.J.: Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame. Combust. Flame 155(1–2), 316–333 (2008)

    Article  Google Scholar 

  59. Hewson, J.C., Lignell, D.O., Kerstein, A.R.: Modeling differential diffusion in non-premixed combustion: soot transport in the mixture fraction coordinate. Tech. rep., Centre for Turbulence Research (2008)

  60. Garmory, A., Mastorakos, E.: Capturing localised extinction in Sandia flame f with LES-CMC. Proc. Combust. Inst. 33(1), 1673–1680 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Navarro-Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Martinez, S., Rigopoulos, S. Differential Diffusion Modelling in LES with RCCE-Reduced Chemistry. Flow Turbulence Combust 89, 311–328 (2012). https://doi.org/10.1007/s10494-011-9370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9370-z

Keywords

Navigation