Skip to main content
Log in

A Modelling Study of Evolving Particle-laden Turbulent Pipe-flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An Eulerian turbulent two phase flow model using kinetic theory of granular flows for the particle phase was developed in order to study evolving upward turbulent gas particle flows in a pipe. The model takes the feedback of the particles into account and its results agree well with experiments. Simulations show that the pipe length required for particle laden turbulent flow to become fully developed is up to five times longer than an unladen flow. To increase the understanding of the dependence of the development length on particle diameter a simple model for the expected development length was derived. It shows that the development length becomes shorter for increasing particle diameters, which agrees with simulations up to a particle diameter of 100 μm. Thereafter the development length becomes longer again for increasing particle diameters because larger particles need a longer time to adjust to the velocity of the carrier phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amberg, G., Törnhardt, R., Winkler, C.: Finite element simulations using symbolic computing. Math. Comput. Simul. 17, 228–237 (1999)

    Google Scholar 

  2. Balzer, G., Simonin, O., Boelle, A., Lavieville, J.: A unifying modelling approach for the numerical prediction of dilute and dense gas-solid two-phase flow. Tech. rep., Département Laboratoire National d’Hydraulique (1996)

  3. Benavides, A.: Eulerian-Eulerian modeling of turbulent gas-particle flow. Tech. rep., Department of Applied Mechanics, Chalmers University of Technology, Göteborg Sweden (2008)

  4. Benavides, A., van Wachem, B.: Numerical simulation and validation of dilute turbulent gas-particle flow with inelastic collisions and turbulence modulation. Powder Technol. 182, 294–306 (2008)

    Article  Google Scholar 

  5. Benyahia, S., Syamlal, M., O’Brien, T.J.: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Tchnol. 156, 62–72 (2005)

    Article  Google Scholar 

  6. Bolio, E.J., Yasuna, J.A., Sinclair, J.L.: Dilute turbulent gas-solid flow in risers with particle-particle interactions. AIChE J. 41, 1375–1388 (1995)

    Article  Google Scholar 

  7. Cerbelli, S., Giusti, A., Soldati, A.: ADE approach to predicting dispersion of heavy particles in wall-bounded turbulence. Int. J. Multiphase Flow 27, 1861–1879 (2001)

    Article  MATH  Google Scholar 

  8. Chan, C.K., Guo, Y.C., Lau, K.S.: Numerical modeling of gas-particle flow using a comprehensive kinetic theory with turbulence modulation. Powder Technol. 150, 42–55 (2005)

    Article  Google Scholar 

  9. Gobin, A., Neau, H., Simonin, O., Llinas, J.R., Reiling, V., Sélo, J.L.: Fluid dynamic numerical simulation of gas phase polymerization reactor. Int. J. Numer. Methods Fluids 43, 1199–1220 (2003)

    Article  MATH  Google Scholar 

  10. Gullman-Strand, J., Amberg, G., Johansson, A.V.: Turbulence and scalar flux modelling applied to separated flows. Tech. rep., Department of Mechanics, Royal Institute of Technology, Stockholm Sweden (2004)

  11. Hadinoto, K., Curtis, J.: Numerical simulation of the Reynolds number effect on gas-phase turbulence modulation. Int. J. Multiphase Flow 35, 129–141 (2009)

    Article  Google Scholar 

  12. Hadinoto, K., Curtis, J.S.: Effect of interstitial fluid on particle-particle interactions in kinetic theory approach of dilute turbulent fluid-particle flow. Ind. Eng. Chem. Res. 43, 3604–3615 (2004)

    Article  Google Scholar 

  13. Hadinoto, K., Jones, E., Yurteri, C., Curtis, J.: Renyolds number dependence of gas-phase turbulence in gas-particle flows. Int. J. Multiphase Flow 31, 416–434 (2005)

    Article  MATH  Google Scholar 

  14. Hetsroni, G.: Particles-turbulence interaction. Int. J. Multiphase Flow 15, 735–746 (1989)

    Article  Google Scholar 

  15. Hinze, J.O.: Turbulence. McGraw-Hill Book Company (1959)

  16. Jackson, R.: Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian fluid. Chem. Eng. Sci. 52, 2457–2469 (1997)

    Article  Google Scholar 

  17. Jenkins, J.T., Louge, M.Y.: On the flux of fluctuating energy in a collisional grain flow at a flat frictional wall. Phys. Fluids 9, 2835–2840 (1997)

    Article  Google Scholar 

  18. Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  19. Kulick, J.D., Fessler, J.R., Eaton, J.K.: Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109–134 (1994)

    Article  Google Scholar 

  20. Lun, C.K.K., Savage, S.B.: The effects of an velocity dependent coefficient of restitution on stresses developed by sheared granular materials. Acta Mech. 63, 15–44 (1986)

    Article  MATH  Google Scholar 

  21. Peirano, E., Leckner, B.: Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Prog. Energy Combust. Sci. 24, 259–296 (1998)

    Article  Google Scholar 

  22. Picano, F., Sardina, G., Casciola, C.: Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093, 305 (2009)

    Google Scholar 

  23. Portela, L., Cota, P., Oliemans, R.: Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technol. 125, 149–157 (2002)

    Article  Google Scholar 

  24. Riber, E., Moureau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J. Comp. Phys. 228, 539–564 (2009)

    Article  MATH  Google Scholar 

  25. Schiller, L., Naumann, A.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver Deut Ing 77, 318–320 (1933)

    Google Scholar 

  26. Simonin, O., Deutsch, E., Minier, J.: Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51, 275–283 (1993)

    Article  MATH  Google Scholar 

  27. Strömgren, T., Brethouwer, G., Amberg, G., Johansson, A.V.: Modelling of turbulent gasparticle flows with focus on two-way coupling effects on turbophoresis. Submitted to AIChE J pp. (2011)

  28. Strömgren, T., Brethouwer, G., Amberg, G., Johansson, A.V.: A modelling study of evolving particle-laden turbulent pipe-flow. In: Hanjalić, K., Nagano, Y., Jakirlić, S. (eds.) Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer Rome, pp. 713–716 (2009)

  29. Tanaka, T., Tsuji, Y.: Numerical simulation of gas-solid two-phase in a vertical pipe: On the effect of inter-particle collision. In: 4th Symposium on Gas-Solid Flows, ASME FED, vol. 121, pp. 123–128 (1991)

  30. Tsuji, Y., Morikawa, Y., Shiomi, H.: LDV measurements of an air-solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417–434 (1984)

    Article  Google Scholar 

  31. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, Inc. La Cañada, California (1993)

  32. Yamamoto, T., Potthoff, M., Tanaka, T., Kajishima, T., Tsuji, Y.: Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J. Fluid Mech. 442, 303–334 (2001)

    Article  MATH  Google Scholar 

  33. Zhang, Y., Reese, J.M.: Particle-gas turbulence interactions in a kinetic theory approach to granular flows. Int. J. Multiphase Flows 27, 1945–1964 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Strömgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strömgren, T., Brethouwer, G., Amberg, G. et al. A Modelling Study of Evolving Particle-laden Turbulent Pipe-flow. Flow Turbulence Combust 86, 477–495 (2011). https://doi.org/10.1007/s10494-011-9335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9335-2

Keywords

Navigation