Skip to main content
Log in

Large Eddy Simulation of a Turbulent Lifted Flame using Conditional Moment Closure and Rate-Controlled Constrained Equilibrium

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The objective of this paper is the simulation of a turbulent flame by employing the Rate-Controlled Constrained Equilibrium (RCCE) approach for the chemistry reduction, and Large-Eddy Simulation (LES) coupled with Conditional Moment Closure (CMC) for the turbulence-chemistry interaction modelling. RCCE is a systematic method for mechanism reduction, based on the concept that certain species characterized by faster time scales are in a constrained equilibrium state, determined by the concentration of the species controlled by the chemical kinetics. A general system of differential equations can be derived, independent on the selection of the fast and slow species (which appears as a parameter). The RCCE system is used to compute the conditional source term in the CMC equation. The flame simulated here is a methane flame issuing into a vitiated co-flow formed by hot combustion products, the “Cabra” flame, which is controlled by auto-ignition and is therefore sensitive to the chemical mechanism. The results show an influence of the chosen chemistry in the ignition length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88(3–4), 239–264 (1992)

    Article  Google Scholar 

  2. Lam, S.H., Goussis, D.: Understanding complex chemical kinetics with computational singular perturbation. Proc. Combust. Inst. 22, 931–941 (1988)

    Google Scholar 

  3. Pilling, M.J., Tomlin, A.S., Turányi, T.: Mathematical tools for the construction, investigation and reduction of combustion mechanisms. In: Pilling, M.J., Hancock, G. (eds.) Low Temperature Combustion and Autoignition, pp. 293–437. Elsevier (1997)

  4. Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Ener. Comb. Sci. 35(2), 192–215 (2009)

    Article  Google Scholar 

  5. Keck, J.C., Gillespie, D.: Rate-controlled partial-equilibrium method for treating reacting gas mixtures. Combust. Flame 17(2), 237–241 (1971)

    Article  Google Scholar 

  6. Jones, W.P., Rigopoulos, S., Smith, D., Maas, U.: Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30(I), 1325–1331 (2005)

    Article  Google Scholar 

  7. Jones, W.P., Rigopoulos, S.: Rate-controlled constrained equilibrium: formulation and application to nonpremixed laminar flames. Combust. Flame 142(3), 223–234 (2005)

    Article  Google Scholar 

  8. Jones, W.P., Rigopoulos, S.: Reduced chemistry for hydrogen and methanol premixed flames via rcce. Combust. Theory Model. 11(5), 755–780 (2007)

    Article  MATH  Google Scholar 

  9. Rigopoulos, S., Løvås, T.: A loi-rcce methodology for reducing chemical kinetics, with application to laminar premixed flames. Proc. Combust. Inst. 32(I), 569–576 (2009)

    Article  Google Scholar 

  10. Cabra, R.: Turbulent jet flames into a vitiated co-flow. Cr-2003212887, NASA Report (2004)

  11. Cabra, R., Chen, J.-Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Lifted methane-air jet flames in vitiated coflow. Combust. Flame 143, 491–506 (2005)

    Article  Google Scholar 

  12. Gkagkas, K., Lindstedt, R.P.: Transported PDF modelling with Detailed Chemistry of Pre and Auto-Ignition in CH4/Air mixtures. Proc. Combust. Inst. 31, 1559–1586 (2007)

    Article  Google Scholar 

  13. Domingo, P., Vervisch, L., Veynante, D.: Large-Eddy Simulation of a lifted methane flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)

    Article  Google Scholar 

  14. Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: Transport budgets in turbulent lifted flames of methane auto igniting in a vitiated co-flow. Combust. Flame 151, 495–511 (2007)

    Article  Google Scholar 

  15. Navarro-Martinez, S., Kronenburg, A.: Les-cmc simulations of a lifted methane flame. Proc. Combust. Inst. 32(1), 1509–1516 (2009)

    Article  Google Scholar 

  16. Jones, W.P., Navarro-Martinez, S.: Large Eddy Simulation of auto-ignition with a subgrid probability density function. Combust. Flame 150, 170–187 (2007)

    Article  Google Scholar 

  17. Patwardhan, S.S., Santanu De, Lakshmisha, K.N., Raghunandan, B.N.: Cmc simulations of lifted turbulent jet flame in a vitiated coflow. Proc. Comb. Inst. 32(2), 1705–1712 (2009)

    Article  Google Scholar 

  18. Lawn, C.J.: Lifted flames on fuels jets in co-flowing air. Prog. Ener. Comb. Sci. 35, 1–30 (2009)

    Article  Google Scholar 

  19. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  20. Piomelli, U., Liu, J.: Large Eddy Simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7(4), 893–848 (1995)

    Article  Google Scholar 

  21. Pitsch, H., Steiner, H.: Large-Eddy Simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 10, 2541–2554 (2000)

    Article  Google Scholar 

  22. Navarro-Martinez, S., Kronenburg, A., di Mare, F.: Conditional moment closure for Large Eddy Simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  MATH  Google Scholar 

  23. Bushe, K., Steiner, H.: Conditional moment closure for Large Eddy Simulation of non-premixed turbulent reacting flows. Phys. Fluids, A 11, 1896–1906 (1999)

    Article  MATH  Google Scholar 

  24. Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for Large Eddy Simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mastorakos, E., Bilger, R.W.: Second-order conditional moment closure for the autoignition of turbulent flows. Phys. Fluids 10, 1246–1248 (1998)

    Article  Google Scholar 

  26. Kronenburg, A.: Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames. Phys. Fluids 16, 2640 (2004)

    Article  Google Scholar 

  27. Klimenko, A.Y., Pope, S.B.: A model for turbulent reactive flows based on Multiple Mapping Conditioning. Phys. Fluids 15(7), 1907–1925 (2003)

    Article  MathSciNet  Google Scholar 

  28. Branley, N., Jones, W.P.: Large Eddy Simulation of a turbulent non-premixed flame. Combust. Flame 127, 1914–1934 (2001)

    Article  Google Scholar 

  29. Yanenko, N.N.: The Method of Fractional Steps: Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971)

    MATH  Google Scholar 

  30. Cabra, R., Myrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent h2/n2 jet flame in a vitiated co-flow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  31. Gordon, R.L., Starner, S.H., Masri, A.R., Bilger, R.W.: Further characterisation of lifted hydrogen and methane flames issuing into a vitiated co-flow. In: Proceedings of the 5th Asia-Pacific Conference on Combustion, University of Adelaide (2005)

  32. Jones, W.P., di Mare, F., Marquis, A.J.: LES-BOFFIN: Users Guide. Technical Memorandum, Imperial College, London (2002)

    Google Scholar 

  33. Van Leer, B.: Towards the ultimate conservative difference scheme.ii. monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  34. Juchmann, W., Latzel, H., Shin, D.I., Peiter, G., Dreier, T., Volpp, H.R., Wolfrum, J., Lindstedt, R.P., Leung, K.M.: Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames. Proc. Combust. Inst. 27, 469–476 (1998)

    Google Scholar 

  35. Sick, V., Hildenbrand, F., Lindstedt, R.P.: Quantitative laser-based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane-air counterflow diffusion flames. Proc. Combust. Inst. 27, 1401–1409 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelios Rigopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-Martinez, S., Rigopoulos, S. Large Eddy Simulation of a Turbulent Lifted Flame using Conditional Moment Closure and Rate-Controlled Constrained Equilibrium. Flow Turbulence Combust 87, 407–423 (2011). https://doi.org/10.1007/s10494-011-9324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9324-5

Keywords

Navigation