Skip to main content
Log in

Effects of Lewis Number on Scalar Variance Transport in Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The influences of differential diffusion rates of heat and mass on the transport of the variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been studied using three-dimensional simplified chemistry based Direct Numerical Simulation (DNS) data of statistically planar turbulent premixed flames with global Lewis number ranging from Le = 0.34 to 1.2. The Lewis number effects on the statistical behaviours of the various terms of the transport equations of variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been analysed in the context of Reynolds Averaged Navier Stokes (RANS) simulations. It has been found that the turbulent fluxes of the progress variable and temperature variances exhibit counter-gradient transport for the flames with Lewis number significantly smaller than unity whereas the extent of this counter-gradient transport is found to decrease with increasing Lewis number. The Lewis number is also shown to have significant influences on the magnitudes of the chemical reaction and scalar dissipation rate contributions to the scalar variance transport. The modelling of the unclosed terms in the scalar variance equations for the non-unity Lewis number flames have been discussed in detail. The performances of the existing models for the unclosed terms are assessed based on a-priori analysis of DNS data. Based on the present analysis, new models for the unclosed terms of the active scalar variance transport equations are proposed, whenever necessary, which are shown to satisfactorily capture the behaviours of unclosed terms for all the flames considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Linstedt, R.P., Vaos, E.M.: Modelling of premixed turbulent flames with second moment methods. Combust. Flame 116, 461–485 (1999)

    Article  Google Scholar 

  2. Mantel, T., Bilger, R.W.: Conditional statistics in a turbulent premixed flame derived from Direct Numerical Simulation. Combust. Sci. Technol. 96(3), 393–417 (1995)

    Article  Google Scholar 

  3. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  4. Moler, S.I., Lundgren, E., Fureby, C.: Large eddy simulation of turbulent combustion. Proc. Combust. Instit. 26, 241–248 (1996)

    Google Scholar 

  5. Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust. Flame 146, 665–673 (2006)

    Article  Google Scholar 

  6. Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling of nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141, 271–280 (2005)

    Article  Google Scholar 

  7. Mura, A., Robin, V., Champion, M.: Modelling of scalar dissipation in partially premixed flames. Combust. Flame 149, 217–224 (2007)

    Article  Google Scholar 

  8. Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V-flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry. Combust. Flame 143, 566–586 (2005)

    Article  Google Scholar 

  9. Savre, J., Bertier, N., Gaffie, D.: A flamelet tabulated chemistry approach for premixed combustion using industrial CFD codes, 2nd colloquium INCA, 23–24th October, France (2008)

  10. Swaminathan, N., Bray, K.N.C.: Effects of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame 143, 549–565 (2005)

    Article  Google Scholar 

  11. Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)

    Article  Google Scholar 

  12. Chakraborty, N., Cant, R.S.: Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21, 035110 (2009)

    Article  Google Scholar 

  13. Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion—Part I: general formulation. Combust. Flame 61, 87–102 (1985)

    Article  Google Scholar 

  14. Peters, N.: Turbulent combustion, 1st edn. Cambridge University Press, U.K (2000)

    Book  MATH  Google Scholar 

  15. Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A-priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20, 045106 (2008)

    Article  Google Scholar 

  16. Chakraborty, N., Cant, R.S.: Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames. Combust. Flame 156, 1427–1444 (2009)

    Article  Google Scholar 

  17. Sivashinsky, G.I.: Instabilities, pattern formation and turbulence in flames. Annu. Rev. Fluid Mech. 15, 179–199 (1983)

    Article  Google Scholar 

  18. Clavin, P., Williams, F.A.: Effects of molecular diffusion and thermal expansion on the structure and dynamics of turbulent premixed flames in turbulent flows of large scale and small intensity. J. Fluid Mech. 116, 251–282 (1982)

    Article  MATH  Google Scholar 

  19. Libby, P.A., Linan, A., Williams, F.A.: Strained premixed laminar flames with non-unity Lewis numbers. Combust. Sci. Technol. 34, 257–293 (1983)

    Article  Google Scholar 

  20. Abdel-Gayed, R.G., Bradley, D., Hamid, M., Lawes, M.: Lewis number effects on turbulent burning velocity. Proc. Combust. Inst. 20, 505–512 (1984)

    Google Scholar 

  21. Ashurst, W.T., Peters, N., Smooke, M.D.: Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol. 53, 339–375 (1987)

    Article  Google Scholar 

  22. Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)

    Article  Google Scholar 

  23. Rutland, C., Trouvé, A.: Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame 94, 41–57 (1993)

    Article  Google Scholar 

  24. Trouvé, A., Poinsot, T.: The evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids 17, 105105 (2005)

    Article  Google Scholar 

  26. Chakraborty, N., Cant, R.S.: Influence of Lewis number on strain rate effects in turbulent premixed flame propagation in the thin reaction zones regime. Int. J. Heat Mass Transfer 49, 2158–2172 (2006)

    Article  MATH  Google Scholar 

  27. Yuan, J., Ju, Y., Law, C.K.: Coupled hydrodynamic and diffusional–thermal instabilities in flame propagation at small Lewis numbers. Phys. Fluids 17, 074106 (2005)

    Article  Google Scholar 

  28. Bell, J.B., Cheng, R.K., Day, M.S., Shepherd, I.G.: Numerical simulation of Lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31, 1309 (2007)

    Article  Google Scholar 

  29. Chakraborty, N., Klein, M.: Influence of Lewis number on the Surface Density Function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids 20, 065102 (2008)

    Article  Google Scholar 

  30. Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)

    Article  Google Scholar 

  31. Chakraborty, N., Cant, R.S.: Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Numer. Heat Transf. A 55(7), 762–779 (2009)

    Article  Google Scholar 

  32. Rogerson, J., Swaminathan, N., Tanahashi, M., Shiwaku, N.: Analysis of progress variable variance equations using DNS data. Proc. of 3rd European Combustion Meeting (2007)

  33. Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels. In: Liu, C.,Sakell, L., Beautner, T. (eds.) Proc. Second AFOSR Conf. on DNS and LES, pp. 192–202. Kluwer (1999)

  34. Gustafsson, B.: The convergence rate for difference approximations to general mixed initial boundary value problems. SIAM J. Numer. Anal. 18(1), 179–190 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wray, A.A.: Minimal storage time advancement schemes for spectral methods. Report No. MS 202 A-1, NASA Ames Research Center, California (1990)

  36. Poinsot, T., Veynante, D.: Theoretical and numerical combustion. Edwards, Philadelphia (2001)

    Google Scholar 

  37. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Batchelor, G.K., Townsend, A.A.: Decay of turbulence in final period. Proc. R. Soc. Lond. A. 194, 527–542 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA TM81315, NASA Ames Research Center, California (1981)

  40. Mizomoto, M., Asaka, S., Ikai, S., Law, C.K.: Effects of preferential diffusion on the burning intensity of curved flames. Proc. Combust. Inst. 20, 1933–1940 (1984)

    Google Scholar 

  41. Im, H.G., Chen, J.H.: Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen–air flames. Combust. Flame 131, 246–258 (2002)

    Article  Google Scholar 

  42. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane–air flames. Combust. Flame 106, 184–202 (1996)

    Article  Google Scholar 

  43. Gran, I.R., Echekki, T., Chen, J.H.: Negative flame speed in an unsteady 2-D premixed flame: a computational study. Proc. Combust. Inst. 26, 211–218 (1996)

    Google Scholar 

  44. Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane–air flames. Proc. Combust. Inst. 27, 833–839 (1998)

    Google Scholar 

  45. Durbin, P.A., Pettersson Reif, B.A.: Statistical theory and modelling for turbulent flows. Wiley (2001)

  46. Bray, K.N.C.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Turbulent reacting flows, pp. 115–183. Springer, Berlin (1980)

    Google Scholar 

  47. Mantel, T., Borghi, R.: New model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)

    Article  Google Scholar 

  48. Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)

    Article  Google Scholar 

  49. Chakraborty, N., Swaminathan, N.: Influence of Damköhler number on turbulence–scalar interaction in premixed flames, part I: physical insight. Phys. Fluids 19, 045103 (2007)

    Article  Google Scholar 

  50. Chakraborty, N., Swaminathan, N.: Influence of Damköhler number on turbulence–scalar interaction in premixed flames, part II: model development. Phys. Fluids 19, 045104 (2007)

    Article  Google Scholar 

  51. Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Theory Model. 12, 671–698 (2008)

    Article  MATH  Google Scholar 

  52. Mura, A., Robin, V., Champion, M., Hasegawa, T.: Small scale features of velocity and scalar fields in turbulent premixed flames. Flow Turbul. Combust. 82, 339–358 (2009)

    Article  MATH  Google Scholar 

  53. Chakraborty, N., Swaminathan, N.: Effects of Lewis number on scalar dissipation transport and its modelling implications for turbulent premixed combustion. Combust. Sci. Technol. 182(9), 1201–1240 (2010)

    Article  Google Scholar 

  54. Vervisch, L., Hauguel, R., Domingo, P., Rullaud, M.: Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted non-premixed flame and RANS of jet-flame. J. Turbul. 5(1), 1–36 (2004)

    Google Scholar 

  55. Bray, K.N.C., Swaminathan, N.: Scalar dissipation rate and flame surface density in premixed turbulent combustion. Comptes Rendus Mechanique 334, 466–473 (2006)

    Article  MATH  Google Scholar 

  56. Rogerson, J.W., Swaminathan, N.: Correlation between dilatation and scalar dissipation in turbulent premixed flames. Proc. of 3rd European Combust. Meeting (2007)

  57. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combustion Inst. 27, 917–925 (1998)

    Article  Google Scholar 

  58. Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of flame wrinkling LES combustion model to a turbulent mixing layer. Proc. Comb. Inst. 27, 899–907 (1998)

    Google Scholar 

  59. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids A 12, 1843–1863 (2000)

    Article  Google Scholar 

  60. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  61. Fureby, C.: A fractal flame wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)

    Article  Google Scholar 

  62. Fox, R.O.: Computational models for turbulent reacting flows. Cambridge University press, Cambridge (2003)

    Book  Google Scholar 

  63. Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on surface density function transport in turbulent premixed CH4–air and H2–air flames: a comparative study. Combust. Flame 154, 259–280 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nedunchezian Swaminathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, N., Swaminathan, N. Effects of Lewis Number on Scalar Variance Transport in Premixed Flames. Flow Turbulence Combust 87, 261–292 (2011). https://doi.org/10.1007/s10494-010-9305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9305-0

Keywords

Navigation