Skip to main content
Log in

Effects of Bubbles, Droplets or Particles on Heat Transfer in Turbulent Channel Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Adding small immiscible substances of low volume to turbulent channel water flow modifies turbulence and turbulent heat transfer. We examine the effects on the modifications of the ratios of the physical properties of substances to the physical properties of the carrier fluid, the particle Reynolds number, the Stokes number and the Weber number. We discuss the applicability and importance of the local, instantaneous values of these non-dimensional numbers. In particular, the maxima and minima for the time change in the Stokes number are found to correspond to the minima and maxima respectively for the time change of the wall-normal distance of a heavy, solid particle in turbulent flow in a vertical channel. We also investigate the effectiveness of the recent developments of particle-tracking velocimetry and particle-resolved direct numerical simulation, in increasing the understanding of changes in turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagiwara, Y.: Some biological hints on the control of heat and mass transfer. J. Therm. Sci. Tech. 3, 381–390 (2008)

    Article  Google Scholar 

  2. Hagiwara, Y., Suzaki, T., Saegusa, D.: Interaction between near-wall turbulence structure and immiscible droplets falling with wobbling motion in upward water flow. Energy 30, 181–195 (2005)

    Article  Google Scholar 

  3. Kitagawa, A., Hishida, K., Kodama, Y.: Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp. Fluids 38, 466–475 (2005)

    Article  Google Scholar 

  4. Angeli, P., Hewitt, G.F.: Pressure gradient in horizontal liquid-liquid flows. Int. J. Multiph. Flow 24, 1183–1203 (1998)

    Article  MATH  Google Scholar 

  5. Hetsroni, G., Li, C.-F., Mosyak, A., Tiselj, I.: Heat transfer and thermal pattern around a sphere in a thermal boundary layer. Int. J. Multiph. Flow 27, 1127–1150 (2001)

    Article  MATH  Google Scholar 

  6. Sakamoto, H., Haniu, H.: A study on vortex shedding from spheres in a uniform flow. J. Fluids Eng. 112, 386–392 (1990)

    Article  Google Scholar 

  7. Achenback, E.: Vortex shedding from spheres. J. Fluid Mech. 62, 209–221 (1974)

    Article  Google Scholar 

  8. Michaelides, E.E.: Interactions of fluids with particles, drops and bubbles. In: Crowe, C. (ed.) Multiphase Flow Handbook, pp. 1-17–1-79. CRC, Boca Raton (2006)

    Google Scholar 

  9. Fan, L.-S., Tsuchiya, K.: Chapter 2 Single bubble rise characteristics. In: Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions, pp. 17–69. Butterworth-Heinemann, Boston (1990)

    Google Scholar 

  10. Schiller, L., Naumann, A.Z.: Über die grundlegnde Berechnungen bei der Schwer-kraftaufbereitung. Z. Ver. Deutsch. Ing. 77, 318–320 (1933)

    Google Scholar 

  11. Uhlherr, P.H.T., Sinclair, C.G.: The effect of free-stream turbulence on the drag coefficient of sphere. In: Chemeca ‘70: A Conference Convened by the Australian Nat. Committee of the Inst. of Chem. Engrs and the Australian Acad. of Science, pp. 5–13 (1970)

  12. Merle, A., Legendre, D., Magnaudet, J.: Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J. Fluid Mech. 532, 53–62 (2005)

    Article  MATH  Google Scholar 

  13. Feng, Z.-G., Michaelides, E.E.: Drag coefficients of viscous spheres at intermediate and high Reynolds numbers. J. Fluids Eng. 123, 841–849 (2001)

    Article  Google Scholar 

  14. Clift, R., Grace, J.R., Weber, M.E.: Chapter 6 Nonspherical rigid particles at high Reynolds numbers. In: Bubbles, Drops, and Particles, pp. 142–168. Dover Pub. Mineola (2005) (original: Academic Press, 1978)

  15. Serizawa, A., Kataoka, I., Michiyoshi, I.: Turbulence structure of air–water bubbly flow-II. Local properties. Int. J. Multiph. Flow 2, 235–246 (1975)

    Google Scholar 

  16. Gore, R.A., Crowe, C.T.: Modulation of turbulence by a dispersed phase. J. Fluids Eng. 113, 304–307 (1991)

    Article  Google Scholar 

  17. Eaton, J.K.: Turbulence modulation by particles. In: Crowe, C. (eds.) Multiphase Flow Handbook, pp. 12-86–12-98. CRC, Boca Raton (2006)

    Google Scholar 

  18. Fessler, J.R., Eaton, J.K.: Turbulence modification by particles in a backward-facing step flow. J. Fluid Mech. 394, 97–117 (1999)

    Article  MATH  Google Scholar 

  19. Tang, L., Wen, F., Yang, Y., Crowe, C.T., Chung, J.N., Troutt, T.R.: Self-organizing particle dispersion mechanism in free shear flows. Phys. Fluids A4, 2244–2251 (1992)

    Google Scholar 

  20. Tanaka, Y., Oba, G., Hagiwara, Y.: Experimental study on the interaction between large scale vortices and particles in solid-liquid two-phase flow. Int. J. Multiph. Flow 29, 361–373 (2003)

    Article  MATH  Google Scholar 

  21. Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305-1–053305-27 (2008)

    Article  Google Scholar 

  22. Marchioli, C., Salvetti, M.V., Soldati, A.: Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20, 040603-1–040603-11 (2008)

    Article  Google Scholar 

  23. Soldati, A., Marchioli, C.: Physics and modeling of turbulent particle deposition and entrainment: Review of a systematic study. Int. J. Multiph. Flow 35, 827–839 (2009)

    Article  Google Scholar 

  24. Kussin, J., Sommerfeld, M.: Experimental studies on particle behavior and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143–159 (2002)

    Google Scholar 

  25. Mito, Y., Hanratty, T.J.: Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Flow Turbul. Combust. 68, 1–26 (2002)

    Article  MATH  Google Scholar 

  26. Luo, J., Ushijima, T., Kitoh, O., Lu, Z., Liu, Y.: Lagrangian dispersion in turbulent channel flow and its relationship to Eulerian statistics. Int. J. Heat Fluid Flow 28, 871–880 (2007)

    Article  Google Scholar 

  27. Kevlahan, N.K.-R.: Rapid distortion of turbulent structure. Appl. Sci. Res. 51, 411–415 (1993)

    Article  MATH  Google Scholar 

  28. Hagiwara, Y., Takashina, Y., Tanaka, M.: Direct numerical simulation of the basic phase-interactions in liquid turbulent channel flow with immiscible droplets. Int. J. Nucl. Eng. Des. 175, 49–57 (1997)

    Article  Google Scholar 

  29. Bec, J., Cencini, M., Hillerbrand, R.: Heavy particles in incompressible flows: the large Stokes number asymptotics. Physica, D 226, 11–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kajishima, T., Takiguchi, S., Hamasaki, H., Miyake, Y.: Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Int. J. 44, 526–535 (2001)

    Article  Google Scholar 

  31. Clift, R., Grace, J.R., Weber, M.E.: Shapes of rigid and fluid particles. In: Bubbles, Drops, and Particles, chapter 2, pp. 16–29. Dover Pub. Mineola (2005) (original: Academic Press, 1978)

  32. Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  33. Clift, R., Grace, J.R., Weber, M.E.: Spheres as high Reynolds numbers. In: Bubbles, drops, and particles, chapter 5, pp. 97–141. Dover Pub. Mineola (2005) (original: Academic Press, 1978)

  34. Whitaker, S.: Forced convection heat transfer correlations for flow in pipes past flat plates, single cylinders, single spheres, and flow in packed beds and tubes bundles. AIChE J. 18, 361–371 (1972)

    Article  Google Scholar 

  35. Feng, Z.-G., Michaelides, E.E.: Heat and mass transfer coefficients of viscous spheres. Int. J. Heat Mass Transfer 44, 4445–4454 (2001)

    Article  MATH  Google Scholar 

  36. Bejan, A.: Time-dependent conduction, chapter 4. In: Heat Transfer, pp. 143–215. Wiley, New York (1993)

    Google Scholar 

  37. Fujiwara, A., Minato, D., Hishida, K.: Effect of bubble diameter on modification of turbulence in an upward pipe flow. Int. J. Heat Fluid Flow 25, 481–488 (2004)

    Article  Google Scholar 

  38. Goto, M., Matsukura, N., Hagiwara, Y.: Heat transfer characteristics of warm water flow with cool immiscible droplets in a vertical pipe. Exp. Therm. Fluid Sci. 29, 371–381 (2005)

    Article  Google Scholar 

  39. Zheng, Z., Suzuki, K., Hosokawa, S., Tomiyama, A.: Motion of single bubbles near a grid spacer in a two by three rod bundle. J. Fluid Sci. Tech. 3, 172–182 (2008)

    Article  Google Scholar 

  40. Kitagawa, A., Hagiwara, Y., Kouda, T.: PTV investigation of phase interaction in dispersed liquid-liquid two-phase turbulent swirling flow. Exp. Fluids 42, 871–880 (2007)

    Article  Google Scholar 

  41. Kitagawa, A., Kitada, K., Hagiwara, Y.: Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Exp. Fluids 49, 613–622 (2010)

    Article  Google Scholar 

  42. Pozorski, J., Łuniewski, M.: LES with subgrid-scale particle modeling in turbulent channel flow. In: Proc. 6th Int. Conf. on Multiphase Flow (DVD-ROM), Paper S3_Tue_D_27, pp. 1–6 (2007)

  43. Sugiyama, K., Takagi, S., Matsumoto, Y.: Numerical analysis of wall turbulence laden with small particles by LES (The effect of SGS models in the flow to the particle motion) (in Japanese). Trans. Japan Soc. Mech. Eng. 66B, 103–112 (2000)

    Google Scholar 

  44. Wang, L.-P., Rosa, B., Gao, H., He, G., Jin, G.: Turbulent collision of inertial particles: Point-particle based, hybrid simulations and beyond. Int. J. Multiph. Flow 35, 854–867 (2009)

    Article  Google Scholar 

  45. Feng, Z.-G., Michaelides, E.E.: Heat transfer in particulate flows with direct numerical simulation (DNS). Int. J. Heat Mass Transfer 52, 777–786 (2009)

    Article  MATH  Google Scholar 

  46. Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 671–691 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  47. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S.: A geometrical area-preserving volume-of-fluid advection method. J. Comput. Phys. 192, 355–364 (2003)

    Article  MATH  Google Scholar 

  48. Tanaka, M., Matsui, N., Miyajima, Y., Hagiwara, Y.: DNS of heat transfer and flow characteristics in turbulent bubbly upflow in a vertical channel (in Japanese). In: Proc. 46th National Heat Transfer Symposium of Japan, vol. 2+3, pp. 355–356 (2009)

  49. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  51. Takewaki, H., Nishiguchi, A., Yabe, T.: Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. J. Comput. Phys. 61, 261–268 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  52. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  53. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  54. Lu, J., Tryggvason, G.: Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys Fluids 20, 040701-1–040701-6 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimichi Hagiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, Y. Effects of Bubbles, Droplets or Particles on Heat Transfer in Turbulent Channel Flows. Flow Turbulence Combust 86, 343–367 (2011). https://doi.org/10.1007/s10494-010-9296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9296-x

Keywords

Navigation