Skip to main content
Log in

New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Over the past three decades laser combustion diagnostics have guided an improved understanding of turbulent combustion processes. Until recently, this was based on statistically independent sampling using sampling rates much slower than typical integral time-scales of turbulent flames. Recent developments in laser and camera technology enabled an increase in sampling rates by more than three orders of magnitudes. Using these new instruments for particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) at high sampling rates (high-speed diagnostics) allowed the resolution of integral time-scales of turbulent flames. This statistically dependent sampling is increasingly used to temporally track transients in turbulent combustion, such as flame extinction, ignition, flashback and cycle-to-cycle variations in IC engines. The simultaneous application of flow and scalar field measurements makes insights into these transients possible that were not when using statistically independent sampling with low data acquisition rates. Conditioning on distinct flame features with high-speed diagnostics enables the inclusion of time as an additional dimension. This paper reviews the emerging field of multi-parameter, high-speed, planar laser diagnostics in combustion applications. The benefit of high data acquisition rates in turbulent combustion applications is discussed in detail as well as requirements and constraints imposed by the time-scales of the investigated phenomenon are addressed. Recent developments in laser and detector hardware are highlighted, as these are the limiting factors of the sampling rate. Finally, multi-parameter high-speed measurements in combustion are summarized, with a few examples discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohse-Höinghaus, K., Jeffries, J.B. (eds.): Applied Combustion Diagnostics. Taylor & Francis, New York (2002)

    Google Scholar 

  2. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Berlin (1998)

    Google Scholar 

  3. Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)

    Article  Google Scholar 

  4. Schulz, C., Sick, V.: Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progr. Energ. Combust. Sci. 31(1), 75–121 (2005)

    Article  Google Scholar 

  5. Tropea, C.F., John, F., Yarin, A. (eds.): Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007)

    Google Scholar 

  6. Pope, S.B.: Turbulent Flows. Cambridge University Press, vol. 770. Cambridge (2000)

    Google Scholar 

  7. Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135(1–2), 185–190 (2003)

    Article  Google Scholar 

  8. Seffrin, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157(2), 384–396 (2010)

    Article  Google Scholar 

  9. Xiong, Y., Roberts, W.L., Drake, M.C., Fansler, T.D.: Investigation of premixed flame-kernel/vortex interactions via high-speed imaging. Combust. Flame 126(4), 1827–1844 (2001)

    Article  Google Scholar 

  10. Nauert, A., Petersson, P., Linne, M., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback. Exp. Fluids 43(1), 89–100 (2007)

    Article  Google Scholar 

  11. Ng, W.B., Clough, E., Syed, K.J., Zhang, Y.: The combined investigation of the flame dynamics of an industrial gas turbine combustor using high-speed imaging and an optically integrated data collection method. Meas. Sci. Technol. 15(11), 2303–2309 (2004)

    Article  Google Scholar 

  12. Elsinga, G.E., Scarano, F., Wieneke, B., von Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  13. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35), 35 (2004)

    Article  Google Scholar 

  14. Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air–fuel mixing in realistic DISI IC-engines. Proc. Combust. Inst. 32, 2759–2766 (2009)

    Article  Google Scholar 

  15. Kaminski, C.F., Hult, J., Aldén, M.: High repetition rate planar laser-induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B 68(4), 757–760 (1999)

    Article  Google Scholar 

  16. Upatnieks, A., Laberteaux, K., Ceccio, S.L.: A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows. Exp. Fluids 32, 87–98 (2002)

    Article  Google Scholar 

  17. Wang, G.H., Clemens, N.T., Varghese, P.L.: Two-point, high-repetition rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl. Opt. 44, 6741–6751 (2005)

    Article  Google Scholar 

  18. Wäsle, J., Winkler, A., Sattelmayer, T.: Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames. Flow Turbul. Combust. 75(1–4), 29–50 (2005)

    Article  MATH  Google Scholar 

  19. Smith, J.D., Sick, V.: Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine. Appl. Phys. B 81(5), 579–584 (2005)

    Article  Google Scholar 

  20. Böhm, B., Heeger, C., Boxx, I., Meier, W., Dreizler, A.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)

    Article  Google Scholar 

  21. Boxx, I., Heeger, C., Gordon, R., Böhm, B., Aigner, M., Dreizler, A., Meier, W.: Simultaneous three component PIV/OH PLIF measurements of a lifted, C3H8-argon diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32, 905–912 (2009)

    Article  Google Scholar 

  22. Konle, M., Kiesewetter, F., Sattelmayer, T.: Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback. Exp. Fluids 44, 529–538 (2008)

    Article  Google Scholar 

  23. Fajardo, C., Sick, V.: Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines. Exp. Fluids 46(1), 43–53 (2009)

    Article  Google Scholar 

  24. Müller, S.H.R., Böhm, B., Gleißner, M., Grzeszik, R., Arndt, S., Dreizler, A.: Flow field measurements in an optically accessible, direct-injection spray-guided internal combustion engine using high-speed PIV. Exp. Fluids 48(2), 281–290 (2010)

    Article  Google Scholar 

  25. Steinberg, A.M., Driscoll, J.F., Ceccio, S.L.: Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44(6), 985–999 (2008)

    Article  Google Scholar 

  26. Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame. Proc. Combust. Inst. 30, 691–699 (2005)

    Article  Google Scholar 

  27. Renfro, M.W., Guttenfelder, W.A., King, G.B., Laurendeau, N.M.: Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: OH. Combust. Flame 123(3), 389–401 (2000)

    Article  Google Scholar 

  28. Bäuerle, B., Hoffmann, F., Behrendt, F., Warnatz, J.: Detection of hot spots in the end gas of an internal combustion engine using two-dimensional LIF of formaldehyde. Proc. Combust. Inst. 25, 135–141 (1994)

    Google Scholar 

  29. Schiessl, R., Pixner, P., Dreizler, A., Maas, U.: Formaldehyde formation in the endgas of Otto engines: Numerical simulations and quantitative concentration measurements. Combust. Sci. Technol. 149, 339–360 (1999)

    Article  Google Scholar 

  30. Wu, P.F., Lempert, W.R., Miles, R.B.: Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction in a Mach 2.5 wind tunnel. AIAA J. 38(4), 672–679 (2000)

    Article  Google Scholar 

  31. Jiang, N.B., Webster, M.C., Lempert, W.R.: Advances in generation of high-repetition-rate burst mode laser output. Appl. Opt. 48(4), B23–B31 (2009)

    Article  Google Scholar 

  32. Li, D.J., Ma, Z., Haas, R., Schell, A., Simon, J., Diart, R., Shi, P., Hu, P.X., Loosen, P., Du, K.M.: Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 32(10), 1272–1274 (2007)

    Article  Google Scholar 

  33. Gordon, R.L., Heeger, C., Dreizler, A.: High-speed mixture fraction imaging. Appl. Phys. B 96(4), 745–748 (2009)

    Article  Google Scholar 

  34. Smith, J.D., Sick, V.: Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane. Proc. Combust. Inst. 31, 747–755 (2007)

    Article  Google Scholar 

  35. Paa, W., Müller, D., Stafast, H., Triebel, W.: Flame turbulence recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals. Appl. Phys. B 86, 1–5 (2007)

    Article  Google Scholar 

  36. Lempert, W.R., Wu, P.F., Miles, R.B., Zhang, B., Lowrance, J.L.: Pulse-burst laser system for high speed flow diagnostics. AIAA Aerospace Science Meeting, vol. 34. Reno (1996)

  37. Etoh, T.G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A.J.P., Ruckelhausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T., Takano, Y.: An image sensor which captures 100 consecutive frames at 1,000,000 frames/s. IEEE Trans. Electron Devices 50, 144–151 (2003)

    Article  Google Scholar 

  38. Janus, B., Dreizler, A., Janicka, J.: Experimental study on stabilization of lifted swirl flames in a model GT combustor. Flow Turbul. Combust. 75, 293–315 (2005)

    Article  MATH  Google Scholar 

  39. Barbosa, S., Scouflaire, P., Ducruix, S.: Time resolved flow field, flame structure and acoustic characterization of a staged multi-injection burner. Proc. Combust. Inst. 32(2), 2965–2972 (2009)

    Article  Google Scholar 

  40. Sick, V., Drake, M.C., Fansler, T.D.: High-speed imaging for direct-injection gasoline engine research and development. Exp. Fluids (2010). doi:10.1007/s00348-010-0891-3

    Google Scholar 

  41. Renfro, M.W., Klassen, M.S., King, G.B., Laurendeau, N.M.: Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence. Opt. Lett. 22(3), 175–177 (1997)

    Article  Google Scholar 

  42. Jiayao, Z., Venkatesan, K.K., King, G.B., Laurendeau, N.M., Renfro, M.W.: Two-point time-series measurements of minor-species concentrations in a turbulent nonpremixed flame. Opt. Lett. 30(23), 3144–3146 (2005)

    Article  Google Scholar 

  43. Meyer, T.R., Roy, S., Anderson, T.N., Miller, J.D., Katta, V.R., Lucht, R.P., Gord, J.R.: Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor. Appl. Opt. 44(31), 6729–6740 (2005)

    Article  Google Scholar 

  44. Roy, S., Kulatilaka, W.D., Richardson, D.R., Lucht, R.P., Gord, J.R.: Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Opt. Lett. 34(24), 3857–3859 (2009)

    Article  Google Scholar 

  45. Dreizler, A., Lindenmaier, S., Maas, U., Hult, J., Aldén, M., Kaminski, C.F.: Characterization of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B 70(2), 287–294 (2000)

    Article  Google Scholar 

  46. Kaminski, C.F., Hult, J., Aldén, M., Lindenmaier, S., Dreizler, A., Maas, U., Baum, M.: Spark iginition of turbulent methane/air mixtures revealed by time resolved planar laser-induced fluorescence and direct numerical simulations. Proc. Combust. Inst. 29, 399–405 (2000)

    Article  Google Scholar 

  47. Hult, J., Meier, U., Meier, W., Harvey, A., Kaminski, C.F.: Experimental analysis of flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30, 701–709 (2005)

    Article  Google Scholar 

  48. Hult, J., Richter, M., Nygren, J., Aldén, M., Hultqvist, A., Christensen, M., Johansson, B.: Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines. Appl. Opt. 41, 5002–5014 (2002)

    Article  Google Scholar 

  49. Jiang, N., Lempert, W.R., Switzer, G.L., Meyer, T.R., Gord, J.R.: Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics. Appl. Opt. 47(1), 64–71 (2008)

    Article  Google Scholar 

  50. Miller, J.D., Slipchenko, M., Meyer, T.R., Jiang, N.B., Lempert, W.R., Gord, J.R.: Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator. Opt. Lett. 34(9), 1309–1311 (2009)

    Article  Google Scholar 

  51. Cundy, M.E., Sick, V.: Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser. Appl. Phys. B 96(2–3), 241–245 (2009)

    Article  Google Scholar 

  52. Kittler, C., Dreizler, A.: Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate. Appl. Phys. B 89, 163–166 (2007)

    Article  Google Scholar 

  53. Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  54. Williams, T.C., Hargrave, G.K., Halliweel, N.A.: The development of high-speed particle image velocimetry (20 kHz) for large eddy simulation code refinement in bluff body flows. Exp. Fluids 35, 85–91 (2003)

    Article  Google Scholar 

  55. Wernet, M.P.: Temporally resolved PIV for space–time correlations in both cold and hot jet flows. Meas. Sci. Technol. 18, 1387–1403 (2007)

    Article  Google Scholar 

  56. Towers, D.P., Towers, C.E.: Cyclic variability measurements of incylinder engine flows using high-speed particle image velocimetry. Meas. Sci. Technol. 15, 1917–1925 (2004)

    Article  Google Scholar 

  57. Jarvis, S., Justham, T., Clarke, A., Garner, C.P., Hargrave, G.K., Halliwell, N.A.: Time resolved digital PIV measurements of flow field cyclic variation in an optical IC engine. In: Second International Conference on Optical and Laser Diagnostics, vol. 45, pp. 38–45 (2006)

  58. Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data. Exp. Fluids 39, 1009–1023 (2005)

    Article  Google Scholar 

  59. Fajardo, C.M., Sick, V.: Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution. Proc. Combust. Inst. 31, 3023–3031 (2007)

    Article  Google Scholar 

  60. Heeger, C., Böhm, B., Ahmed, S.F., Gordon, R., Boxx, I., Meier, W., Dreizler, A., Mastorakos, E.: Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proc. Combust. Inst. 32, 2957–2964 (2009)

    Article  Google Scholar 

  61. Boxx, I., Stöhr, M., Carter, C., Meier, W.: Sustained multi-kHz flame-front and 3-component velocity-field measurements for the study of turbulent flames. Appl. Phys. B 95, 23–29 (2009)

    Article  Google Scholar 

  62. Boxx, I., Stöhr, M., Carter, C., Meier, W.: Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust. Flame 157(8), 1510–1525 (2010)

    Article  Google Scholar 

  63. Upatnieks, A., Driscoll, J., Rasmussen, C., Ceccio, S.: Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259–272 (2004)

    Article  Google Scholar 

  64. Heeger, C., Gordon, R.L., Tummers, M.J., Sattelmayer, T., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids (2010). doi:10.1007/s00348-010-0886-0

    Google Scholar 

  65. Fajardo, C.M., Smith, J.D., Sick, V.: Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser. Appl. Phys. B 85(1), 25–30 (2006)

    Article  Google Scholar 

  66. Peterson, B., Sick, V.: Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine. Appl. Phys. B 97(4), 887–895 (2009)

    Article  Google Scholar 

  67. Lemaire, A., Meyer, T.R., Zähringer, K., Gord, J.R., Rolon, J.C.: PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength. Exp. Fluids 36(1), 36–42 (2004)

    Article  Google Scholar 

  68. Böhm, B., Geyer, D., Dreizler, A., Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2006)

    Article  Google Scholar 

  69. Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)

    Article  Google Scholar 

  70. Ashurst, W.M.T.: Flame propagation along a vortex: the Baroclinic push. Combust. Sci. Technol. 112, 175–185 (1996)

    Article  Google Scholar 

  71. Kiesewetter, F., Konle, M., Sattelmayer, T.: Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. ASME J. Eng. Gas Turbine Power 129, 929–936 (2007)

    Article  Google Scholar 

  72. Konle, M., Sattelmayer, T.: Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp. Fluids 57(4–5), 627–635 (2009)

    Article  Google Scholar 

  73. Burmberger, S., Hirsch, C., Sattelmayer, T.: Designing a radial swirler vortex breakdown burner. Proc. ASME Turbo Expo, Barcelona, Spain (2006)

  74. Fansler, T.D., Drake, M.C., Böhm, B.: High-speed Mie-scattering diagnostics for spray-guided gasoline engine development, vol. 8. Internationales Symposium für Verbrennungsdiagnostik, Baden-Baden (2008)

  75. Lawn, C.: Lifted flames on fuel jets in co-flowing air. Progr. Energ. Combust. Sci. 35, 1–30 (2009)

    Article  Google Scholar 

  76. Buckmaster, J.: Edge-flames. Progr. Energ. Combust. Sci. 28(5), 435–475 (2002)

    Article  Google Scholar 

  77. Lyons, K.M.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Progr. Energ. Combust. Sci. 33(2), 211–231 (2007)

    Article  Google Scholar 

  78. Kelman, J., Eltobaji, A., Masri, A.: Laser imaging in the stabilization region of turbulent lifted flames. Combust. Sci. Technol. 135, 117–134 (1998)

    Article  Google Scholar 

  79. Boxx, I., Heeger, C., Gordon, R., Böhm, B., Dreizler, A., Meier, W.: On the importance of temporal context in interpretation of flame discontinuities. Combust. Flame 156, 269–271 (2009)

    Article  Google Scholar 

  80. Mizobuchi, Y., Shinio, J., Ogawa, S., Takeno, T.: A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611–619 (2005)

    Article  Google Scholar 

  81. Schefer, R.W., Namazian, M., Filtopoulos, E.E.J., Kelly, J.: Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames. Proc. Combust. Inst. 25, 1223–1231 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dreizler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, B., Heeger, C., Gordon, R.L. et al. New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics. Flow Turbulence Combust 86, 313–341 (2011). https://doi.org/10.1007/s10494-010-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9291-2

Keywords

Navigation